Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/32934
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGiannis, Angelosen
dc.contributor.authorΓιαννής, Άγγελοςel
dc.date.accessioned2023-07-05T14:54:30Z-
dc.date.available2023-07-05T14:54:30Z-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/32934-
dc.identifier.urihttp://dx.doi.org/10.26268/heal.uoi.12734-
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectΦυσική Πλάσματοςel
dc.subjectΠυρηνική Σύντηξηel
dc.subjectΜαγνητικός Περιορισμόςel
dc.titleHall Magnetohydrodynamics equilibrium states for fusion plasmas via Hamiltonian variational principlesen
dc.titleΚαταστάσεις ισορροπίας πλάσματος σύντηξης στα πλαίσια της Μαγνητοϋδροδυναμικής Hall μέσω Χαμιλτονιανών παραλλακτικών αρχώνel
dc.typemasterThesisen
heal.typemasterThesisel
heal.type.enMaster thesisen
heal.type.elΜεταπτυχιακή εργασίαel
heal.classificationΠυρηνική Σύντηξηel
heal.dateAvailable2023-07-05T14:55:30Z-
heal.languageenel
heal.accessfreeel
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημώνel
heal.publicationDate2023-06-19-
heal.abstractEquilibrium equations for magnetically confined, axisymmetric plasmas are derived by means of Hamiltonian variational principles. This approach stems from the non-canonical Hamiltonian structure of Hall Magnetohydrodynamics (Hall MHD), the simplest, quasineutral two-fluid model that incorporates contributions due to ion Hall drifts. The axisymmetric Casimir invariants - functionals that Poisson-commute with any arbitrary functional of the dynamical variables - are used, along with the Hamiltonian functional to apply the Energy- Casimir variational principle for axisymmetric two-fluid plasmas with incompressible ion flows. The aforementioned variational principle results in a system of equations of the Grad- Shafranov Bernoulli (GS-Bernoulli) type with four free functions that are dictated by the Hall MHD model. A family of analytic solutions to the GS-Bernoulli system is then recovered, based on specific ansatzes for the free functions. These solutions are subsequently applied to Tokamak-relevant and FRC-relevant configurations using proper shaping methods. The Hall MHD model predicts a departure of the ion velocity surfaces from the magnetic surfaces on which the electron-fluid surfaces lie. This causes a separation of the two fluids (viz. the electron and the ion ones), which subsequently results in sub-Alfvénic ion flows and the development of poloidal electric fields. The pressure profile is peaked on the magnetic axis and exhibits a fine stratification inside a poloidal cross-section, which is desirable for the effective confinement of plasma. The relevance of these solutions to laboratory and astrophysical plasmas is finally discussed, with particular focus on systems that involve length scales on the order of the ion skin depth.en
heal.advisorNameΘρουμουλόπουλος, Γεώργιοςel
heal.committeeMemberNameΘρουμουλόπουλος, Γεώργιοςel
heal.committeeMemberNameΝίντος, Αλέξανδροςel
heal.committeeMemberNameΑρχοντής, Βασίλειοςel
heal.academicPublisherΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Φυσικήςel
heal.academicPublisherIDuoiel
heal.numberOfPages113 σ.el
heal.fullTextAvailabilitytrue-
Appears in Collections:Διατριβές Μεταπτυχιακής Έρευνας (Masters) - ΦΥΣ

Files in This Item:
File Description SizeFormat 
Μ.Ε. ΓΙΑΝΝΗΣ ΑΓΓΕΛΟΣ 2023.pdf4.74 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons