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Abstract

Equilibrium equations for magnetically confined, axisymmetric plasmas are derived by
means of Hamiltonian variational principles. This approach stems from the non-canonical
Hamiltonian structure of Hall Magnetohydrodynamics (Hall MHD), the simplest, quasineu-
tral two-fluid model that incorporates contributions due to ion Hall drifts. The axisymmetric
Casimir invariants - functionals that Poisson-commute with any arbitrary functional of the
dynamical variables - are used, along with the Hamiltonian functional to apply the Energy-
Casimir variational principle for axisymmetric two-fluid plasmas with incompressible ion
flows. The aforementioned variational principle results in a system of equations of the Grad-
Shafranov Bernoulli (GS-Bernoulli) type with four free functions that are dictated by the Hall
MHD model. A family of analytic solutions to the GS-Bernoulli system is then recovered,
based on specific ansatzes for the free functions. These solutions are subsequently applied
to Tokamak-relevant and FRC-relevant configurations using proper shaping methods. The
Hall MHD model predicts a departure of the ion velocity surfaces from the magnetic surfaces
on which the electron-fluid surfaces lie. This causes a separation of the two fluids (viz. the
electron and the ion ones), which subsequently results in sub-Alfvénic ion flows and the de-
velopment of poloidal electric fields. The pressure profile is peaked on the magnetic axis and
exhibits a fine stratification inside a poloidal cross-section, which is desirable for the effective
confinement of plasma. The relevance of these solutions to laboratory and astrophysical plas-
mas is finally discussed, with particular focus on systems that involve length scales on the
order of the ion skin depth.
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1
Prelude to plasma physics and controlled

thermonuclear fusion

I have never thought that you could obtain the extremely
clumpy, heterogeneous universe we have today, strongly

affected by plasma processes, from the smooth, homogeneous
one of the Big Bang, dominated by gravitation.

Hannes Alfvén

1.1 Plasma, the fourth state of matter
Since ancient times, man was already familiar with the solid and liquid state which he

called respectively the first and second states of matter. It took numerous centuries before
the third state, the gaseous one, was identified, while the fourth state of matter was discov-
ered much more recently. So it came to pass that in 1928, an American scientist named Irving
Langmuir used the term ”plasma” to describe ”regions containing balanced charges of ions
and electrons”, a state he encountered whilst studying the behaviour of gases in electric dis-
charge experiments [1]. When we heat a solid body, it melts and becomes a liquid. If we
heat the liquid, then it turns into a gas, and on further heating the gas becomes ionised. This
happens because when temperatures are high enough, the building blocks that comprise the
gas (i.e. atoms or molecules) undergo violent collisions due to their intense thermal motion,
causing the electrons to be stripped away from the ions. This process is called ionisation, and
results in a collection of electrons and positive ions, as well as neutral particles. The physics of
this gas is now governed by the electromagnetic interactions between electrons and ions. It is
therefore commonly accepted that by the term ”plasma”, we mean gases that have undergone
ionisation, i.e. have been separated into the individual elements of their atoms (electrons and
nuclei). However, not every ionised gas can necessarily be classified as plasma. In particular,
certain specific criteria must be met, which will be discussed below.

In order to acknowledge the abundance of plasma in our universe, one needs only gaze
in the night sky; everything that we can see is the part of normal matter that is in the plasma
state, emitting radiation. This includes our Sun and all the other stars, as well as the inter-
planetary, interstellar and intergalactic medium [2]. But why does plasma not appear under
normal conditions on Earth? The reasons for this are mainly two. First, plasma can only exist
in vacuum conditions, otherwise the air would eventually cool the plasma and ion-electron
recombination 1 in atoms or molecules would take place. This explains why about 99% of the
baryonic matter in the universe is in plasma state [3]. The second reason can be easily un-

1Recombination is the opposite process of ionisation.
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Chapter 1 – Prelude to plasma physics and controlled thermonuclear fusion

derstood, if one considers the well-known Saha equation, which gives us the percentage of
ionisation in a gas that is in thermodynamic equilibrium [2]:

ni

nn
≈ 2.4 × 1021 T3/2

ni
e−

Ui
kBT , (1.1)

where ni, nn are the number densities of ions and neutral atoms respectively, T is the tem-
perature in K, kB is the Boltzmann constant and Ui is the ionisation energy of the gas, i.e.
the energy required to strip away an electron from the gas atom. Here we note that ni in the
denominator indicates the dependence of the recombination rate on the ions (as the density
of ions increases, the ionised-neutral ratio decreases due to recombination) [2]. Considering
atmospheric air at room temperature (let us suppose that it consists only of nitrogen atoms
in thermodynamic equilibrium), we assume nn ≈ 1025m−3, T ≈ 300 K and Ui = 14.5 eV.
Substituting these values into (1.1), we obtain:

ni

nn
≈ 10−122, (1.2)

which is infinitesimally small. From the above example it can be deduced that in normal con-
ditions prevailing on Earth, it is not possible for matter to exist in plasma state. However, as
the temperature increases, the exponential in (1.1) dominates and so the ratio ni/nn increases
rapidly. At sufficiently high temperatures (T ' 105 K), we have practically complete ionisa-
tion, such as occurs in the centre of stars or even in stellar coronae [4], [5]. In practice, however,
the transition point between the gas and plasma phase is not specific; it has been established
that a 0.1% degree of ionisation is enough for a gas to attain clear plasma properties, while
a degree of 1% means approximately perfect conductivity (fully-ionised plasma) [6]. Hence,
owing to the abundance of charged particles, it is evident that a plasma is characterised by a
high degree of electrical conductivity, a concept that will be better understood in the section
to follow.

Although plasmas are not a customary phenomenon in our planet, there are some in-
stances where gases obtain plasma properties. More specifically, lightning strikes, aurora
borealis, electric sparks or even neon lights and plasma display screens are a few examples
of plasma in our planet. Since plasmas can be found in our universe in a range of number
densities and temperatures, we illustrate some notable cases in Figure 1.1.

Figure 1.1: The various manifestations of plasma in our universe.
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Chapter 1 – Prelude to plasma physics and controlled thermonuclear fusion

1.2 Plasma criteria
As mentioned above, not every single ionised gas can be characterized as plasma. Below

we discuss the 3 criteria that ought to be met for this purpose.

1.2.1 Quasineutrality - Debye shielding
In contrast to strong nuclear interactions between nuclei that are extremely short ranged,

electromagnetic interactions that are dominant in a plasma affect charged particles at a signif-
icantly longer range. Therefore, we intuitively expect that what happens in a neighborhood of
the plasma will affect, more or less, the other charges as well. We can quantify this by placing
an electrode of positive charge Q inside a plasma, as shown in Fig. 1.2.

Q
λD

Figure 1.2: Debye shielding in plasma.

The role of electrostatic forces, as we see, is decisive. Placing the positive electrode results
in a concentration of negative charge around it in order to neutralize the local charge density
created. The negative charges therefore ”shield” the rest of the plasma from the externally
applied electric field. This phenomenon is a very fundamental property of plasma and is called
Debye shielding. If the plasma was ”cold”, i.e. if there were no thermal motions (T → 0),
thenwewould have complete shielding and around the electrode therewould be exactly equal
and opposite charge (−Q) at zero distance. In this case, the electric field inside the plasma
space would be equal to zero: E = 0. In a more realistic case, however, where we have thermal
motions and T > 0, the charges at the edges of the region around the electrode can escape due
to thermal motions and create an electric field E ̸= 0 in the plasma space [2]. It is not difficult
to calculate the thickness of the region. Using the one-dimensional Poisson’s equation in the
International System of Units (SI) 2 for the scalar potential ϕ:

∇2ϕ =
d2ϕ

dx2 = − 1
ϵ0

e[ni(ϕ)− ne(ϕ)], (1.3)

with ni(ϕ) and ne(ϕ) being the ion and electron number densities respectively 3; ϵ0 is the
vacuum permittivity, and e is the elementary charge, we can show that the potential satisfies
a relation of the form

ϕ(x) = ϕ0 e−
|x|
λD , (1.4)

where ϕ0 is a constant. In equation (1.4)we defined a very fundamental quantity, the so-called
Debye length

λD =

(
ϵ0kBTe

ne2

) 1
2

. (1.5)

2Which we will use for this thesis.
3In sufficiently large distances where ϕ → 0, we have ni = ne = n.
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Chapter 1 – Prelude to plasma physics and controlled thermonuclear fusion

Relation (1.4) reveals that the potential decreases exponentially with the distance from the
electrode, a reasonable behaviour since each layer of plasma now has more electrons. We also
note that the shielding length λD is a function of the electron temperature only, which we
expect intuitively as the electrons are more mobile than ions and rush to shield the externally
applied field. As Te increases, λD also increases, so the shielding becomes less efficient. It
is worth noting that, despite the long range of electrostatic forces in the vacuum, inside the
plasma the particles interact weaklywith each other at distances longer than the Debye length.
The Debye length can therefore be used as a measure of the range of Coulomb interactions
within the plasma [2].

From the preceding arguments it is clear that, if some charge concentration is created in
the plasma, then the deviation from neutrality is shielded by the Debye sphere of dimensions
λD. Outside this sphere, it holds that ϕ = const. and from relation (1.3) we get ni − ne ≃ 0,
leaving the rest of the plasma unaffected. Thus, if the condition

λD ≪ L (1.6)
holds, with L being a reference length scale of our system, then the plasma can be considered
macroscopically neutral, for phenomena of the same length scale as L. In this case, we say
that the plasma is quasi-neutral and then

ne ≃ ni = n. (1.7)
However, it should be stressed that the plasma is not completely neutral as there are electro-
magnetic forces that are the main cause of all the important processes that take place in it [2],
[7], [8].

1.2.2 Collective behaviour
Debye shielding is the first example of collective behaviourwe have seen in a plasma. How-

ever, for the shielding to be acceptable in terms of statistical physics, there must be a large
number of charged particles ND within the Debye sphere. Since

ND =
4
3

πλ3
Dn, (1.8)

the above assumption means that

ND ≫ 1, (1.9)
which implies that

λD ≫ n−1/3 = rm, (1.10)
where rm is the mean distance between two interacting particles.

1.2.3 Dominance of electrostatic interactions
In addition to the above two criteria, there is a third requirement that a gas must meet in

order to be classified as plasma, which relates to scattering between its constituent particles.
Using the definition of the Debye length λD and the thermal velocity vth =

√
(2kBT)/me, we

define 4 the frequency of the electrostatic oscillations that take place in the plasma

ωp =

√
ne2

ϵ0me
, (1.11)

4At this point we used the so-called heavy-ion approximation, i.e. we assumed that ions have infinite mass -
hence infinite inertia - relative to electrons. This means that only electrons participate in any change in the kinetic
state of the plasma, while ions do not respond. This approximation is satisfactory, since in a protonic plasma the
ions have 1836 times the mass of the electrons.
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Chapter 1 – Prelude to plasma physics and controlled thermonuclear fusion

where me is the electron mass. Considering the average collision time between charges and
neutral atoms τ, it is evident that the condition

ωpτ ≫ 1 (1.12)

should hold in order for electrostatic interactions to be dominant.
The three aforementioned criteria for classifying a gas as a plasma can be summarised as

follows

λD ≪ L (Debye shielding - quasineutrality),
ND ≫ 1 (Collective behaviour),
ωpτ ≫ 1 (Dominance of electrostatic interactions).

(1.13)
(1.14)
(1.15)

Finally, it is worth stating that from another point of view conditions (1.13) and (1.15) express
that plasma is shielded effectively from DC and AC electric fields respectively [7].

1.3 Controlled thermonuclear fusion
Having presented the basic principles governing plasmas, onemay reasonably ask the use-

fulness of studying the fourth state of matter. Apart from the prominent role of the plasma in
the universe (where, as we mentioned previously, it makes up about 99% of baryonic matter),
there is a multitude of reasons why its capricious behaviour is worth looking into. The most
important of these is the achievement of thermonuclear fusion on laboratory grounds.

It is a widely accepted fact that global energy demands - especially for electricity - are in-
creasing due to perpetual advances in technology [9], the development of civilisation [10]
and climate change [11]. What’s more, the depletion of fossil fuels is now a reality. In partic-
ular, it is estimated that by the end of this century most - if not all - of the world’s fossil fuel
reserves will be exhausted [12]. Apart from fossil fuels, we also have in our disposal renew-
able energy sources, such as wind, hydroelectricity, etc., which are not sufficient to meet the
energy needs of large urban centres because of the problems they have in their storage [13].
Therefore, it seems clear that humanity will have to turn to other forms of energy which are
more efficient, more environmentally friendly and - if feasible - almost inexhaustible. A first
step was taken in the second half of the 20th century, with the discovery of nuclear fission.
Fission reactors are still used extensively today, mainly by countries such as the United States
of America, China, France, etc. and make a significant contribution to meet our energy needs.
However, fission residues are radioactive with long half-lives, polluting the environment and
making them difficult and costly to store. In addition, fission as a process is a chain reaction,
which makes it particularly dangerous, as we have seen in the past from nuclear accidents
(Fukushima, Chernobyl, etc.). Although efforts are constantly being made to upgrade the
current fission reactors, the stocks of nuclear fuel (e.g. 235U, which is one of the most widely
used fissile materials) are running out [14]. Nuclear fusion is a promising alternative; that is
why a large part of the scientific community and beyond is investing in it.

1.3.1 Fundamental concepts and ulterior goal
Controlled thermonuclear fusion is a complex problem which remains to date an ”open”

research topic. To achieve it, most fields of physics have been mobilised and the development
of technology in new areas has been significantly advanced. It is a very ambitious scientific
endeavour as it is intended to solve the world’s energy problem. The reason why life thrives
on Earth is indeed nuclear fusion, for it is the way in which energy is produced inside the
stars, including our Sun. As a process, it is the reverse of fission, in that two lighter nuclei
come together, yielding a heavier nucleus, energy and other subatomic particles. The energy
production is attributed to themass excess of the reactants over the products, which translates

5



Chapter 1 – Prelude to plasma physics and controlled thermonuclear fusion

into energy by virtue of the renown Einstein’s mass-energy equivalence relation. As fusion
reactions are exothermic, this energy is released into the environment.

Several ways of achieving thermonuclear fusion have been proposed from the second half
of the 20th century to the present day. The most important of these are Magnetic Confinement
Fusion (MCF) and Inertial Confinement Fusion (ICF). In the first case, the fuel is introduced
into closed chambers and is heated to very high temperatures, capable of initiating fusion
reactions. In such conditions, the fuel acquires plasma properties and it is confined by means
of strong magnetic fields, because the motions of charges in a magnetic field are limited. This
is due to the anisotropy exhibited by the Lorentz force (1.27) parallel and perpendicular to the
magnetic field. In the second case, a small deuterium-tritium target is bombarded with strong
laser beams or energetic particles, which causes its adiabatic compression, hence its heating.
Although recent advances have been made in the field of ICF [15], the present work examines
nuclear fusion from the scope of magnetic confinement, as this method has given us the most
promising results to date.

The reason why we choose magnetic fields is because of the confinement properties they
possess. To begin with, the charged particles that make up the plasma drift around each mag-
netic line of force. In this way, the magnetic field ”constricts” the plasma and the charges
attach themselves to its field lines. What’s more, the magnetic field can be treated as a kind
of non-material container, as we want the plasma not to come into contact with the reactor
walls to avoid any transmutations. The second reason is attributed to Alfvén’s theorem which
will be examined in Section 1.4.2.3. Since the plasma as a fluid moves along with the magnetic
field lines (the magnetic field is ”frozen” in the plasma), the construction of the geometry of
the magnetic field largely guarantees us the geometry of the plasma. Finally, the thermal con-
ductivity of the plasma exhibits anisotropy parallel and perpendicular to the magnetic field
lines. Thus, heat is very easily released along a field line, but is prevented from being trans-
ported perpendicular to them, thus facilitating the confinement of the plasma. This property
is also seen in plasma loops that appear in the solar corona, where each field line ”has its own
atmosphere” [4] , [5], [8].

It is speculated that the first fusion reactors will be based on the fusion of deuterium and
tritium:

2
1D + 3

1T → 4
2He (3.5 MeV) + n (14.1 MeV). (1.16)

This reaction is preferred over the so-called proton-proton chain [5], which takes place in
the core of our Sun, because firstly it has a lower ignition temperature and secondly it has
a large cross section for intermediate energies - larger even than the D-3He and D-D fusion
reactions [7] as we can see in Fig. 1.3.

Figure 1.3: Experimentally measured cross sections for the D–T, D–3He, and D–D fusion re-
actions as a function of deuterium energy KD = mDv2

D/2 [16].
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In addition, deuterium is abundant in seawater, at 0.015% of hydrogen, so we have an
almost inexhaustible source of energy. To quantify this, it is enough to consider that one litre
of seawater can give us about 1010 J of energy through fusion, which is 300 timesmore than the
energy yielded by burning one litre of petrol (conventional fuel) [8]. In addition, aswe can see,
no radioactive elements are produced, so we do not further pollute the environment. Tritium,
although radioactive, has a very short half-life and is not considered a long-lived radioactive
product like many of the fission residues. Another advantage of fusion over fission is that
fusion is not a chain reaction, so it is a controlled process [2]. In order to have fusion reactions
like in (1.16), we need to heat the fuel (deuterium and tritium) to very high temperatures 5

of the order of 107 K. This is because the Coulomb potential is repulsive and, since we want
to bring together two positively charged nuclei, it is evident that we need sufficiently high
thermal velocities to bring the nuclei close together so as to exert the strong nuclear force,
fusing them into heavier elements. In this case we are talking about thermonuclear fusion
reactions. At these temperatures, matter is in a state of plasma, which is almost completely
ionised. It is also preferable to have relatively high number densities, because in this way the
possibility of thermonuclear reactions is increased. Unfortunately, there are more issues to
be addressed; in order for fusion to be self-sustaining, the energy gains from fusion reactions
must be greater than the energy used to heat the plasma and make up for the energy losses.
This proposal is summarised in the so-called Lawson criterion [17], according to which

nτET ≥ 10−21 m−3 sec keV, (1.17)
where τE is a parameter called the energy confinement time. The higher the value of this pa-
rameter, the lower the rate of energy dissipation. Indicatively, for magnetic confinement a
typical value is τE ≈ 1 sec. This criterion is therefore an important necessary (but not suffi-
cient!) condition for fusion [7].

Finally, there is another issue with D-T fusion, which concerns the very high energy of
neutrons, as we can see from (1.16). Neutrons have a small mass compared to helium nuclei
(alpha particles) and so due to conservation of momentum they gain more energy after the
reaction. The problem is that neutrons are electrically neutral, so they cannot be confined by
the magnetic field and - during the confinement of plasma - they will escape at high velocities
towards the walls. One solution that has been proposed is to coat the reactor walls with a 6

3Li
”mantle” so that neutrons are bound by the following reactions, releasing heat:

n + 6
3Li → T (2.1 MeV) + 4

2He (2.8 MeV)

n (2.5 MeV) + 7
3Li → T + 4

2He + n
(1.18)

In this manner, we are shielded from energetic neutrons, we gain heat and at the same time
we secure tritium, which is our fuel along with deuterium [8].

1.3.2 Toroidal confinement systems
For several decades, the question of choosing the right system for the confinement of

plasma has been a constant concern for scientists. The first systems proposed were the θ and z
pinches, cylindrical systems in which all reference quantities (current density, magnetic field,
pressure, etc.) depend on a single spatial variable, the radial coordinate r - viz. they are one-
dimensional. In particular, they were the most symmetric systems proposed for magnetic
confinement, but unfortunately they were unsuccessful in achieving this goal because of the
particle and energy losses that they exhibited in both their ends [18]. At this point it is reason-
able to wonder what would happen if we joined the two ends of the pinches and got a closed
system. In this case, the straight axis of the cylinder becomes circular (magnetic axis) and
we are talking about closed toroidal magnetic confinement systems. For these toroidal geometries,
and for the needs of this thesis, we will use the usual cylindrical coordinate system (R, ϕ, Z),

5These temperatures exceed those found in the core of the Sun.
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where R is the major radius of the torus, ϕ is the angle across the toroidal direction (toroidal
angle) and Z is the vertical coordinate.

Figure 1.4: The general geometry of a toroidal magnetic confinement system [19].

The geometry of a general toroidal system is depicted in Fig. 1.4. We have also defined
the toroidal and poloidal directions. The former corresponds to the direction we follow as
the toroidal angle ϕ varies (i.e. the direction of the magnetic axis), while the latter lies on any
plane defined by a torus cross-section for a given toroidal angle. If we consider the small and
large radii of the torus a and R0 respectively, a useful geometric parameter is the aspect ratio of
the torus, b [2]:

b =
R0

a
. (1.19)

In the case where b ≫ 1, the torus reduces to a z−pinch and becomes a linear confinement
system.

In the subsections that follow we examine some of the most important magnetic confine-
ment systems with which we expect to achieve controlled thermonuclear fusion.

1.3.2.1 Tokamaks

In the 1960s, the Soviet Union proposed the Tokamak, a closed system for achieving mag-
netic confinement. As we can see in Figure 1.5, this system is of toroidal geometry, and the
magnetic field is helical, having two components: the toroidal Bϕ and the poloidal Bp, with
the toroidal field usually being much stronger than the poloidal one: Bp ≈ 0.1Bϕ. The helicity
of the magnetic field is a necessary condition for the confinement, as we shall see below. In
essence, the Tokamak is nothing else but a transformer, generating the strong toroidal field Bϕ

mainly by means of external coils and the poloidal field Bp inductively from the plasma itself.
In particular, a primary circuit is used to produce a time-varying toroidal current inductively,
which in turn gives us the poloidal field. The toroidal current, in addition to generating the
poloidal magnetic field, also heats the plasma ohmically [8].

A basic property of Tokamaks is axial symmetry (or axisymmetry), viz. the fact that every
scalar quantity A depends solely on the variables R and Z and hence

A = A(R, Z) ⇔ ∂A
∂ϕ

= 0. (1.20)

8
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φ

Figure 1.5: Schematic representation of the magnetic confinement in a Tokamak [8].

This basic property makes the Tokamak a two-dimensional system, as every single quantity
does not depend on the toroidal angle ϕ and therefore facilitates the study of physics in it
and makes its construction easier. Besides this, the plasma in Tokamaks is organised into
well-defined, nested toroidal magnetic surfaces. In essence, every magnetic surface is in fact
a pressure isosurface, to which the current density and magnetic field vectors lie tangentially.
This is illustrated in Figure 1.6. Owing to this behaviour, we can define a flux function Ψ, which
is the (normalised) poloidal magnetic flux,

Ψ =
1

2π

ˆ
S

Bp dS, (1.21)

where S is any surface on the R, ϕ plane. Each magnetic surface is characterised by a specific
poloidal flux, in the sense that it has its own ”Ψ-label”, and thus we can use Ψ as a radial
coordinate [18], [20].

Figure 1.6: Schematic representation of the pressure isosurfaces, as well as the current density
and magnetic field vectors in a Tokamak device [18].

The disadvantages of Tokamak include its pulsed operation due to transformers - which
strains the system in the long run [21], its vulnerability to current-driven instabilities [22] and
the fact that in Tokamaks the heating and confinement of plasma are carried out simultane-
ously. Moreover, in view of the behaviour of the plasma specific resistivity that is discussed

9
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in Section 1.4.2.2, it is clear that the ohmic heating of plasma is intractable in thermonuclear
temperatures.

1.3.2.2 Stellarators

In addition to the Tokamak, another closed magnetic confinement device, the Stellarator,
had been proposed earlier. This system is also of toroidal geometry (Fig. 1.7), but in this case
the magnetic field helicity is achieved exclusively by means of external helical coils.

Figure 1.7: Schematic representation of the magnetic confinement in the W7-X Stellarator in
Greifswald, Germany. From ”Stellarators, Confining plasma with carefully shaped magnetic
fields” (https://terpconnect.umd.edu/~mattland/projects/1_stellarators/)

Unlike Tokamaks, Stellarators are characterised by a lack of symmetry and therefore all refer-
ence quantities depend on all three coordinates (R, ϕ, Z). This makes it difficult both to con-
struct the Stellarator and to study the physics of the plasma in it. In addition, due to the lack
of symmetry, the topology of the magnetic surfaces is not well defined. Another drawback
is that due to the absence of the induced toroidal current, we are not given the possibility of
heating the plasma ohmically. Finally, another downside has been identified in [23], namely
that there are generally unconfined particle orbits regardless of the magnetic field strength.
The Stellarator, however, in contrast to the Tokamak has many advantages, e.g. its operation
is continuous and not pulsed, so we do not have to constantly induce a current in the plasma.
Apart from that, the Stellarator is free of current-driven instabilities and the plasma is charac-
terised by relatively high densities [24].

In general, the Tokamak - despite its drawbacks - seems to be so far the most successful
and promising system in achieving the task of magnetic confinement, due to the symmetry it
exhibits around its major axis. It also has enough magnetically conductive coatings to cover
most instabilities. However, research does not rest on the study of the Tokamak alone. Pre-
cisely because the Stellarator exhibits greater complexity, various ideas and methods have
been enlisted to study the physics and solve the problems that arise in it.

In the next subsection we proceed to study another class of toroidal systems that will be
used for the needs of the current thesis.

1.3.2.3 Field-reversed configurations (FRCs) and Spheromaks

The above two fusion devices comprise the two main toroidal confinement systems that
are employed for the achievement of controlled thermonuclear fusion. Nevertheless, there
also exists another class of axisymmetric toroidal systems that do not require coils passing
through the central penetration of the torus. These are known in the literature as compact
toroids, and include the Field-Reversed Configuration (FRC) and the Spheromak.

10
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The geometry of a field-reversed configuration is shown in Figure 1.8. In order to create
such a fusion device, one starts from thewell knownmagnetic mirror configuration, viz. a mag-
netic field which exhibits a variation of its magnitude along the direction of the field lines (in
other words,∇B ∥ B). Let us suppose that inside the mirror there exists plasma of cylindrical
arrangement, and that we induce a toroidal current in some way, with such direction that it
produces a poloidal magnetic field that opposes the other, external one. In that manner, the
configuration reverses the magnetic field, and hence its name.

J

B

Brev

Figure 1.8: Schematic representation of a field-reversed configuration: a toroidal electric cur-
rent (brown arrow) is induced inside a cylindrical plasma (blue region), creating a poloidal
magnetic field (orange), reversed with respect to the direction of the externally applied mag-
netic field (black). From Wikipedia: https://en.wikipedia.org/wiki/Field-reversed_
configuration#/media/File:Field-Reversed_Configuration.svg

It is evident from Figure 1.8 that FRCs have no toroidal magnetic field; the plasma is confined
solely by a poloidal magnetic field. This in turn means that the said configurations have a
technological structure much simpler than the conventional toroidal systems. In addition,
FRCs are by their very nature inherently pulsed devices, in contrast to Tokamaks which need
external transformers in order to create the toroidal current [7].

The class of compact toroids also includes the so-called Spheromak, which is nothing else
than a field-reversed configuration with an internal toroidal magnetic field. This field may
have the same or the opposite direction with the toroidal plasma flow. The difference between
a Spheromak and a FRC is illustrated in Fig. 1.9.

Figure 1.9: A comparison between Spheromaks and field reversed configurations. From
Wikipedia: https://en.wikipedia.org/wiki/Spheromak#/media/File:A_comparison_of_
an_FRC_and_A_Spheromak.png
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Finally, it should be stressed that although both of the said toroids are compact, the plasma
is still organised in toroidal geometry and as a matter of fact, configurations with closed and
nested magnetic surfaces can be constructed.

Apart from the toroidal systemsmentioned above, numerous other devices have been pro-
posed for the magnetic confinement of plasma, the analysis of which, however, is beyond the
scope of this thesis.

1.3.3 Theorems for the magnetic confinement of plasma
It turns out that for the successful confinement of plasma, one must be aware of certain

theorems that should hold at all times. In this section we briefly discuss those theorems, as
well as their proofs.

The necessity of magnetic field helicity mentioned earlier is summarised in the following
theorem:

Theorem 1. There exists no static 6 equilibrium state that can be achieved with a purely toroidal or
purely poloidal magnetic field.

Proof. Let us suppose that themagnetic field is purely toroidal. Due to the transverse variation
of the magnetic field, the charges separate, thus creating a vertical electric field. Therefore, the
plasma moves towards the walls due to the subsequent E × B drift [2], as shown in Fig. 1.10.
With a purely poloidal field, confinement is not achieved due to kink instability [8].

Figure 1.10: Necessity for the helicity of the magnetic field for a purely toroidal field.

Another useful theorem, also known as the Shafranov’s Virial theorem [25], is the following:

Theorem 2. There exists no equilibrium state where the plasma is self-confined, i.e. part of the magnetic
field must be generated by external coil currents.

The proof of this theorem is presented in [18]. Finally, one might wonder why we use mag-
netic fields and not electric fields to confine the plasma. The answer is given by the following
theorem:

Earnshaw’s Theorem. A charged particle cannot be kept in stable equilibrium only by electrostatic
forces.

6The term static refers to the assumption of zero flow.
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Proof. Consider an arrangement of point charges as in Figure 1.11, where the charges are
placed at the vertices of a cube.

Figure 1.11: Point charges in cubic arrangement [26].

At first glance, it seems that a homonymous charge in the centre of the cube would be held
there, equally repelled by the other charges. In order to have a stable equilibrium, we would
need the scalar potential ϕ to present a local minimum at this point (the centre of the cube).
However, due to the fact that the Laplace equation does not tolerate local maxima or minima
[26], this point that appears to be a point of stable equilibrium is actually a saddle point.

1.4 Plasma modelling
Since a plasma is a collection of charged particles of different species that exhibit collec-

tive behaviorwhile being influencedmainly by the electromagnetic forces - whether externally
applied or generated by the plasma per se - the need for a framework that describes the interac-
tion between such sources and the electromagnetic fields arises. As far as the electromagnetic
fields are concerned, they are given to us via the so-called field equations, which read - if we
employ SI units - in the Minkowski space R1,3:

∂µFµν = µ0 Jν, and ∂µGµν = 0, (1.22)

where Jν = ( s
ϵ0

, J1, J2, J3) is the four-current, with s being the charge density and Ji the three
spacial current density components, Fµν is the field tensor and Gµν = ϵµνρσFρσ is the Poincaré
dual tensor, ∂µ = (ϵ0∂t,∇) is the four-derivative, and µ0 is the vacuum permeability [27]. In
ordinary vector form, equations (1.22) reduce to

∇ · E =
s
ϵ0

(Gauss’s Law),

∇ · B = 0 (Absence of magnetic monopoles),

∇× E = −∂B
∂t

(Faraday’s law),

∇× B = µ0 J + µ0ϵ0
∂E
∂t

(Ampère-Maxwell law).

(1.23)

(1.24)

(1.25)

(1.26)

Eqs. (1.23)-(1.26) tell us how the charge density s(r, t) and current density J(r, t) produce the
fields E and B. But in order to perceive how the fields affect the charges, we need the Lorentz
force, which in SI units reads

F = q(E + v × B), (1.27)

where v is the velocity of the moving charged particle q. Eqs. (1.23)-(1.26), along with the
Lorentz force (1.27) summarise the whole theoretical milieu of classical electrodynamics and
describe all its phenomena. At first glance, one notices that Maxwell’s equations are nothing
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else but differential equations, and as such, they must be accompanied by the appropriate
boundary conditions, reflecting the physics of the problem at hand [26]. Note though that
here the problem of self-consistency arises, in the sense that the motions of the charged par-
ticles (sources) generate extra fields that are to be taken into account in Maxwell equations.
Hence, it becomes quite clear that one needs a self-consistent theory that describes the inter-
action between matter and electromagnetic fields. Plasma physics aims to bridge this gap, by
providing such self-consistent frameworks for the plasma, while ensuring closure for the sys-
tem of equations at hand. Below we present the most notable categories of plasma models,
along with the Hall Magnetohydrodynamics (Hall MHD)model that will be used extensively
in the current thesis.

1.4.1 From kinetic to fluidistic description
Owing to the collective behaviour and the large number of charged particles that comprise

plasmas, it is evident that keeping track of every single particle motion is practically impos-
sible. Furthermore, it is clear that in this case the initial conditions cannot be known with
sufficient accuracy [28]. For these reasons we may adopt a statistical model of description
that relies on the distribution function fα(r, v, t) for each of the particle species α that comprise
the plasma. This function contains information about how the particles distribute in the 6-
dimensional phase space (r, v) at a given instance t. The evolution of the distribution function
is given by the so-called Vlasov equation [29], [30]:

∂ fα

∂t
+ v ·∇x fα +

qα

mα
(E + v × B) ·∇v = 0, (1.28)

which is a direct consequence of the Liouville theorem [31]. If collisions are present, relation
(1.28) is modified to the so-called Boltzmann equation [2], [31]:

∂ fα

∂t
+ v ·∇x fα +

qα

mα
(E + v × B) ·∇v = C [ fα], (1.29)

where C [ fα] is the collision operator that is associated with the evolution of the distribution
function due to the particle collisions [2], [28], [31]. The sources (charge and current densi-
ties) are found as

s(r, t) =
∑

α

qαnα, and J(r, t) =
∑

α

qαnαvα, (1.30)

while the number density of the species α is given from the distribution function

nα(r, t) =

ˆ
fα(r, t)d3v. (1.31)

Solving the system of equations (1.23)-(1.26) along with (1.30), (1.31) and either (1.28) or
(1.29) is by all means a very complicated task to be carried out, even via exploiting numerical
schemes. Therefore, we usually resort to simplified models of description, such as the fluid
ones. In fact, by taking the velocity moments of the Vlasov equation we end up at the well-
known two-fluid equations [28]. By performing this reduction, the microscopic motions are
eliminated by averaging out all of the physical quantities. This is an ample approximation
when we study most laboratory or astrophysical plasmas. On the other hand, in spite of the
adequacy of the fluid models, one may have to resort to kinetic descriptions, since Vlasov
equation provides a proper basis for studying wave-particle interactions [32], [33], plasmas
in astrophysical environments [31], weakly magnetised, high temperature plasmas [28], [34],
[35] etc. The subsection that follows moves on to consider the importance and present the
basic principles of the Magnetohydrodynamics model.
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1.4.2 The Magnetohydrodynamics (MHD) model
In a fully ionised plasma where low characteristic frequencies are involved, both electrons

and ions can respond simultaneously at any change in the kinetic state of the plasma, and
hence the motions of ions and electrons are coupled. In that case, wemay consider the plasma
to behave as a single, magnetised, electrically conducting fluid (Magnetohydrodynamics -
MHD). MHD can be derived from the two-fluid theory (model) which in turn is less fun-
damental than kinetic theory. Its detailed derivation is given in [8] - here we will content
ourselves with presenting its basic assumptions and equations. The reason behind this is to
generalise the MHD model later for the needs of the current thesis.

1.4.2.1 Basic assumptions and formulation

MHD provides a proper framework for the study of many astrophysical and even labora-
tory plasmas. This is indeed the case, when:

1. The characteristic length scale L of our system is much larger than the Debye length and
other microscopic lengths such as the the ion and electron Larmor radii and skin depths:
L ≫ λD, rLs, ds, where s = i, e.

2. The characteristic time scales involved are much longer than the inverses of the plasma
and Larmor frequencies: τ ≫ ωp

−1
s , ωc

−1
s , where s = i, e.

3. The characteristic speed (and thus the Alfvén speed) is small compared to the speed of
light: vA ≪ c, and hence the displacement current in Ampère-Maxwell law (1.26) can
be neglected.

It is evident that the assumption L ≫ λD implies quasineutrality, as discussed in Section 1.2.1,
while L ≫ rLs, ds and the second assumption are necessary in order that two-fluid effects can
be neglected. The reason why the third assumption implies the neglect of the displacement
current can be seen bymaking an order-of-magnitude estimate for the different terms in (1.26),
considering the characteristic length and time scales, L and T respectively:

µ0ϵ0
∂E
∂t

=
1
c2

∂E
∂t

∼ 1
c2

L
T

vB
L

∼
(v

c

)2 B
L
≪ |∇× B| ∼ B

L
, (1.32)

[8], [28]. The third assumption is also interconnectedwith quasineutrality, which is discussed
in [28]. The above assumptions end up at the following equations

∂ρ

∂t
+∇ · (ρv) = 0 (Equation of continuity),

ρ

[
∂v
∂t

+ (v ·∇)v
]
= J × B −∇P + ρg (Momentum equation),

E + v × B = ηJ (Ohm’s law),
∇ · B = 0 (Absence of magnetic monopoles),
∇× B = µ0 J (Ampère’s law),

∇× E = −∂B
∂t

(Faraday’s law),

Equation of state:
{

P ∝ ργ (Adiabatic),
P ∝ ρ (Isothermal)

.

(1.33)

(1.34)

(1.35)
(1.36)
(1.37)

(1.38)

(1.39)

Eqs. (1.33)-(1.39) describe a single-fluid plasma of mass density ρ and velocity v, with an
isotropic (i.e. zeroth order tensor - scalar) pressure P. The gravitational force per unit vol-
ume ρg will be henceforth omitted since it is insubstantial for laboratory plasmas. We also
stress that eqs. (1.39), along with the incompressibility condition of the velocity field, are just
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simplifications for isentropic processes, useful in the scope of analytic approaches. In the case
where one wishes to be more precise, as in numerical calculations, an energy equation should
be taken into account, that describes the conservation of entropy [8]. Last but not least, the
behaviour of the plasma specific resistivity η is examined in detail in Section 1.4.2.2.

It is also worth mentioning that we may combine Faraday’s law (1.38) with Ohm’s law
(1.35), to end up at an equation that describes the temporal variation of the magnetic field.
Truly, after some basic vector calculus manipulations, we end up at

∂B
∂t

=
η

µ0
∇2B +∇× (v × B), (1.40)

which is the so-called induction equation for the magnetic field [5]. This equation is very im-
portant since it describes the ways in which the magnetic field B can change, as a result of
its interaction with the plasma. On the one hand, the first term of the RHS of relation (1.40)
links the temporal change of the magnetic field with the spacial change of the field and the
plasma conductivity, and is known in the literature as the diffusion term. On the other hand,
the second term of the RHS of the equation in question shows us that the the magnetic field
may vary in time due to plasma motions [5].

The equations of Magnetohydrodynamics (1.33)-(1.39) are a system of 7 coupled differ-
ential equations with partial derivatives, which describe non-relativistic phenomena in low-
frequency plasmas and must be solved self-consistently [8].

1.4.2.2 Spitzer’s law - Ideal Magnetohydrodynamics

As we saw in the previous section, the specific resistivity of plasma emerges in Ohm’s law.
Being already aware of the behaviour of the resistivity in metal conductors, one would expect
intuitively that as we increase the temperature, the resistivity will also increase. This picture
is reversed in the plasma, where in fact the opposite is true - the specific resistance decreases with
temperature. This behaviour is described by Spitzer’s law [36], [37]:

η ≈ πe2m1/2
e

(4πϵ0)2(kBTe)3/2 ln Λ, (1.41)

where ln Λ is a constant called the Coulomb logarithm [8]. More simply, we may write

η ∝ T −3/2
e . (1.42)

We can attribute this resistivity behaviour to the Coulomb scattering that takes place between
electrons and ions in the plasma. Relation (1.41) informs us that as the plasma heats up, the
Coulomb scattering cross section decreases and as a result the resistivity decreases relatively
rapidly with increasing temperature. For sufficiently large temperatures, we have in essence
a collisionless plasma and hence we can set η ≃ 0. Because of this resistivity behavior, it
is impossible to heat the plasma ohmically (i.e., with currents) at very high temperatures,
because as we increase the temperature, the plasma becomes collisionless. In particular, for
temperatures from 1 keV and above the plasma becomes such a good conductor that ohmic
heating is a slow and inefficient process [2].

So in the case where sufficiently high temperatures prevail, which as we saw are necessary
for thermonuclear fusion reactions to take place, the plasma is sufficiently conductive and thus
we can set the resistivity equal to zero. Ohm’s law then becomes

E + v × B = 0, (1.43)

and then the model is called Ideal Magnetohydrodynamics (Ideal MHD) [8].
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1.4.2.3 Alfvén’s theorem - Comparing ideal with non-ideal models

The behaviour of the plasma resistivity at thermonuclear temperatures - besides setting
the right-hand side of (1.35) equal to zero - has another unexpected consequence, which is
summarised in the so-called Alfvén’s theorem: ”In a fluid with infinite electrical conductivity,
the magnetic field lines are ’frozen-in’ the fluid and move with it.” [38]. In fact, Alfvén in 1943
argued that ”in view of the infinite conductivity, every motion (perpendicular to the field)
of the liquid in relation to the lines of force is forbidden because it would give infinite eddy
currents”. This means that, given a surface S , the magnetic flux ΦB passing through it is
constant as the surface moves with the plasma:

dΦB

dt
= 0 ⇔

ˆ
S

B · dS = const. (1.44)

The qualitative interpretation of eq. (1.44) is that two scenarios may occur: either the plasma
will move parallel to the magnetic field lines (when the energy density of the plasma is much
lower than the energy density of the magnetic field), or the plasma will drag and deform the
field lines as it moves (in the opposite case) [5]. Due to Spitzer’s law, (1.42), this property of
”frozen-in” field lines is better satisfied the higher the temperature. In fusion plasmas with
temperatures of the order of 10 keV the above-mentioned ”freezing” is an extremely good
approximation, which is why Ideal MHD satisfactorily describes much of the phenomena oc-
curring in it. As the temperature decreases however, the magnetic field acquires an indepen-
dent motion and the above constraint is removed. Then, the magnetic field lines can break
and reconnect through the process of magnetic reconnection [4], [5]. This very important
physical process is depicted in Figure 1.12, where we see the magnetic field lines breaking
and reconnecting when a localised diffusion region (shaded) causes a shift in plasma element
connectivity (AB to AC). Inmost reconnection scenarios, the crucial parameter is the so-called
reconnection rate. Many models have been proposed that address this issue, in the context of
solar flares, Coronal Mass Ejections (CMEs), magnetic flux emergence etc. [39], [40], [41].
In the case when reconnection occurs, one should use MHD with finite resistivity (also called
resistive MHD), that takes into account the ηJ term in the RHS of Ohm’s law (1.35) as well as
the diffusion term in the induction equation (1.40).

Figure 1.12: Schematic representation of the magnetic reconnection process on a typical scale
of 2Le. 2L is the scale of the diffusion region (shaded), while ve is the inflow plasma velocity
[5].

The above finding (1.44) is remarkable, because it guarantees that the topology of themagnetic
field cannot change during any physically allowed ideal MHD motion. In this thesis we will
adopt the above assumption as it is satisfactory for the high temperatures that are necessary
for fusion reactions.

Before closing this section, we wish to stress another important aspect stemming from the
plasma resistivity. More specifically, it is evident that the inclusion of the resistivity term ηJ
in Ohm’s law (1.35), provides a means for the energy to dissipate; namely, via ohmic heating.
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There are many such mechanisms in laboratory and astrophysical plasmas that lead to energy
dissipation, such as Landau damping 7 [2], turbulence, described by Kolomgorov theory and
further generalised for the case of MHD [42], [43], shock waves [4], [5], wave-particle inter-
actions [32], [33], etc. Nonetheless, due to the severe complexity introduced, in the current
thesis we will refrain from assuming that such mechanisms are present.

1.4.3 The Hall Magnetohydrodynamics (Hall MHD) model
MHD is a very popular and a widely employed model; it describes pretty satisfactorily the

majority of phenomena that involve plasma in our universe. Nevertheless, it is apparent that
when one omits the two-fluid nature of plasma and treats the latter as one electrically conduct-
ing fluid, much of its physics and interesting effects are lost upon this simplification. To make
this better understood, in the subsections that follow we will generalise the ordinary MHD
model so as to incorporate two-fluid effects. Afterwards, we will introduce the normaliza-
tion scheme that will be used exclusively thereafter and finally we will deduce the Hall MHD
model - which is the key model of description of this thesis - from the more generic Extended
MHD (XMHD) model.

1.4.3.1 Two-fluid generalisation of the ideal MHDmodel

Instead of writing down the two-fluid equations, we may take the first step towards estab-
lishing a two-fluid generalisation of ideal MHD by defining a center of mass velocity for our
quasineutral (1.7) plasma, which is characterised by a mass m = mi + me and a mass density
ρ = nm = n(mi + me)

v =
1
ρ
(nimivi + nemeve)

(1.7)
=

mivi + meve

mi + me
, (1.45)

which is similar conceptually with the respectiveMHD one-fluid velocity. The current density
of the plasma reads

J = en(vi − ve). (1.46)
Note that although the quantities m, ρ and v are one-fluid ones, they actually refer to a two-fluid
plasma. If we nowmultiply the two-fluid continuity equations with the correspondingmasses,
then add the results and use eq. (1.45), we end up at a single fluid continuity equation of the
form

∂ρ

∂t
+∇ · (ρv) = 0, (1.47)

which describes the conservation of fluid mass. The way to proceed to a single-fluid momen-
tum equation is to notice that

ve = v − mi

m
J

en
, (1.48)

vi = v +
me

m
J

en
, (1.49)

which are found by combining eqs. (1.45) and (1.46). If we further add the two-fluidmomen-
tum equations, the result reads

∂v
∂t

= v × (∇× v) +
mime

m2
J

en
×∇× J

en
−∇

(
P +

|v|2
2

+
mime

2m2

∣∣∣∣ J
en

∣∣∣∣2
)
+ (mn)−1 J × B,

(1.50)
7Yet this dissipation mechanism is collisionless.
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where P = Pi + Pe is the total pressure of the plasma, given by Dalton’s law. The next equation
of this generalised two-fluid model is obtained if we multiply the ion momentum equation by
me and the electron momentum equation by mi and then subtract the resulting equations. We
find

E + v × B⋆ =
mime

em

[
∂

∂t

(
J

en

)
−

− J
en

× (∇× v) +∇
(

v · J
en

+
m2

e − m2
i

2m2

∣∣∣∣ J
en

∣∣∣∣2
)]

−

−
m2

e − m2
i

m2

(
J

en
× B⋆

)
+

1
men

∇(mePi − miPe),

(1.51)

where B⋆ is a ”generalised magnetic field”, modified by electron inertia

B⋆ = B +
mime

em

(
∇× J

en

)
. (1.52)

Eq. (1.51) is essentially a generalised Ohm’s law, since it relates the electric field E with the
current density J. We can also deduce an induction equation, similar to (1.40), by combining
the generalised form of Ohm’s law (1.51) with Faraday’s law (1.25)

∂B⋆

∂t
= ∇×

[
v × B⋆ +

mime

em
J

en
× (∇× v) +

me − mi

m
J

en
× B⋆

]
+

+
1

emn2∇n × (me∇Pi − mi∇Pe).
(1.53)

1.4.3.2 Alfvén normalisation scheme

The above equations comprise the so-called ExtendedMagnetohydrodynamics (XMHD)
model, and describe a two-fluid quasineutral plasma in a similar fashion as the MHD model
does [28]; however with significantly greater complexity. In most cases, we are interested in
a reduced form of the above model, depending of the system that we examine. In order to
perform such a reduction, it is often preferable to normalise the equations in question. For
this scope, we will employ the so-called Alfvén normalisation scheme, that reads as follows

B̄ = B/B0, v̄ = v/vA, J̄ = J/(B0/L0µ0), Ē = E/(vAB0),

∇̄ = L0∇, R̄ = R/L0, Z̄ = Z/L0, P̄ = P/(B2
0/µ0),

t̄ = t/τA, n̄ = n/n0,

(1.54)

where L0 is the reference length scale, B0 is the reference magnetic field, n0 is the reference
number density of the quasineutral plasma, vA = B0/

√
µ0mn0 is the Alfvén speed and fi-

nally τA = L0/vA is the Alfvén time. Quantities with bars are dimensionless, while the
physical ones (viz. with dimensions) are without bars. Henceforth, we will omit the bars
for notational economy, on the understanding that all appearing quantities are normalized as
described above.

Thus, eqs. (1.50) and (1.51) are modified [28] after the prescribed normalisation (1.54) as

∂v
∂t

= −∇
(

P +
|v|2

2
− d2

e
2
|J|2
ρ2

)
+ v × (∇× v) + J × B⋆, (1.55)

E + v × B = di
J × B⋆

ρ
− di

∇Pe

ρ
+

+ d2
e

[
∂

∂t

(
J
ρ

)
− ρ−1 J × (∇× v) +∇

(
v · J

ρ
− di

2
|J|2
ρ2

)]
.

(1.56)
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The induction equation (1.53) can also be normalised, considering that the pressure only de-
pends on the mass density (barotropic plasma), as

∂B⋆

∂t
= ∇×

(
v × B⋆ − di

J × B⋆

ρ
+ d2

e
J ×∇× v

ρ

)
, (1.57)

where the generalised magnetic field now reads

B⋆ = B + d2
e∇× J

ρ
. (1.58)

At this point it is evident that the normalisation of the equations has shed light to another
important aspect of the XMHD model; the new terms that have appeared in the RHS of (1.56)
compared to the simpler ideal MHD form of Ohm’s law (1.43) give rise to new physics in our system.
More specifically, the first term in the RHS of (1.56) is the so-calledHall term, and is intimately
connected with the Hall effect that occurs when we place a flow of charges (that is, a current
J) in a magnetic field B. The second term is the electron pressure term, while the last term is
related to electron inertia8. It is further noteworthy that each of these terms ”enter in” at a different
length scales: the first two terms enter in at the so-called (normalised) ion skin depth 9 di

di =
c

ωpiL0
, where ωpi =

(
n0e2

ϵ0mi

)1/2

is the plasma frequency for the ions, (1.59)

and is the characteristic length scale for ions to be accelerated by electromagnetic forces in a
plasma. On the other hand, the last term at the RHS of eq. (1.56) enters in at the (normalised)
electron skin depth de, defined in a similar fashion as

de =
c

ωpeL0
, where ωpe =

(
n0e2

ϵ0me

)1/2

is the plasma frequency for the electrons. (1.60)

In the case where L0 . di, the ion fluid becomes detached from the electron one and attains a
separate motion with velocity vi. The magnetic field however remains frozen in the electron
fluid, so Alfvén’s theorem holds for the latter. This model is known as Hall Magnetohydro-
dynamics (Hall MHD) and is one of the simplest two-fluid models for describing plasmas
[2], [45], [46]. In the even more extreme case concerning length scales L0 . de, then even the
electron fluid becomes detached from the magnetic field. This is the case in Extended Mag-
netohydrodynamics (XMHD) where we further incorporate the inertia of electrons [28].

1.4.3.3 Reduction to Hall MHD

At this point we may take a step to further restrict our study in the scope of Hall MHD.
In this regard, we will assume that the electron inertia term is negligible (massless electrons),
which translates to me → 0 or in view of the normalised equations as de → 0. This is usually
a very good approximation, since di ≈ 43 de [45]. In this case, owing to (1.49), the velocity
of the ion fluid is equivalent to the center of mass velocity: vi ≡ v. Furthermore, only the ion
fluid contributes to the total mass: m ≡ mi, and as concerns the normalised densities, one can
notice that ρ ≡ n. Moreover, the ”generalised magnetic field” due to electron inertia reduces
to our ordinary magnetic field B. In view of these assumptions, the generalised Ohm’s law
(1.56) reduces to

E + v × B =
di

ρ
(J × B −∇Pe) . (1.61)

8A relative comparison between the different terms of the generalised Ohm’s law is carried out in [44].
9Also called ion inertial length.
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For the needs of the current thesis, we will also assume that the density is constant: ρ = 1 and
then the above equation (1.61) further reduces to

E + v × B = di(J × B −∇Pe) (Ohm’s law). (1.62)

Furthermore, equations (1.55) and (1.57) reduce respectively to

∂v
∂t

= −∇
(

P +
|v|2

2

)
+ v × (∇× v) + J × B (Momentum equation), (1.63)

and

∂B
∂t

= ∇× [v × B − di(J × B)] (Induction equation). (1.64)

Finally, in view of the continuity equation (1.47), a constant density ρ = 1 automatically im-
plies incompressibility of the ion velocity field, viz.

∇ · v = 0 (Incompressible ion flow). (1.65)

Equations (1.62)-(1.65), along with the Maxwell equations (1.36) and (1.37) are the building
blocks of our model, and govern the physics of the phenomena that are to be studied in the
current thesis.

1.5 Motivation and aim
From the previous sections it has been established that the Hall MHD model is employed

- as a ”zeroth-order approximation” - when we want to distinguish the electron from the ion
fluid in our plasma. A more thorough approach would however be to examine whether the
criterion for the validity of our model is satisfied for our physical system in question, that
is fusion plasmas. In order for this framework to be consistent, the necessary condition is
to encounter length scales of the order of the ion skin depth di (1.59), as mentioned above.
Therefore, one may justifiably wonder whether such length scales could be sought in fusion
devices. The answer to this is positive, for there exist numerous scenarios where small length
scales are involved; many of those phenomena concern strong gradients of physical quantities
and even play a leading role in the successful confinement of plasma. Perhaps themost notable
example is the so-called Low-to-High-confinementmode transition (L-H transition) [47], [48],
first observed experimentally in the ASDEX Tokamak in 1982. This transition occurs when a
fusion plasma is heated by neutral beams and a specific power threshold is exceeded. The
result is a significant decrease in the outward radial diffusion of the plasma and a subsequent
increase in the energy confinement time 10. This improvement is related to the creation of a
transport barrier (also known as pedestal) near the plasma boundary, wherein sheared poloidal
flows [49], [50] have been observed, associated with the development of a spontaneous radial
electric field. Accordingly, the plasma pressure remains almost constant in the inner regime
and decreases steeply in the pedestal region, thus a strong pressure gradient is formed therein.
It was also observed that the plasma was lost in bursts called Edge Localised Modes (ELMs),
a kind of instability that still remains not well understood [2]. It is now clear that if one wishes
to examine ELMs or steep pressure gradients - like the ones developing in L-H transitions - it
is imperative to resort to the Hall MHDmodel since the gradient length scales are of the order

10In fact, most Tokamaks today operate in the H-mode regime [2].
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of the ion skin depth. Moreover, it should be noted that Hall effects are capable of causing
the so-called tearing mode instability [51], which occurs in both laboratory and astrophysical
environments. From a more general point of view, this model is also suitable for the study of
transport in fusion plasmas, like neoclassical diffusion [2], [52].

To further acknowledge the importance of the Hall MHD model in controlled thermonu-
clear fusion, we stress that the neglect of the Hall term in magnetic confinement devices has
been previously criticised in [53], by stating that ”the Hall-current effect is much more im-
portant than the electrical resistivity whenever the magnetic field is so large that the gyro-
frequency of electrons greatly exceeds their collision frequency”. A similar argument con-
cerning ion inertial terms has been raised in [54], where it is explicitly noted that the Hall
term cannot be neglected in Tokamaks.

Finally, the Hall MHD model consists an adequate - and sometimes mandatory! - frame-
work for the description of several phenomena in astrophysical plasmas. More specifically,
Hall MHD has shed light to the interpretation of fast magnetic reconnection in astrophysical
plasmas, particularly in solar flares and planetary magnetospheres [5], [45], [55]. The fact
that magnetic reconnection is described by a two-fluid plasma model was also corroborated
by in situ measurements of the magnetic reconnection that takes place in Earth’s magneto-
sphere [56]. The usefulness of Hall MHD is not limited to the above examples; the interested
reader is referred to [57] for even more examples of astrophysical systems described by Hall
MHD, like dense molecular clouds, protostellar disks and neutron stars, to name only a few.

For the successful confinement of plasma in thermonuclear temperatures, an equilibrium
state for the plasma is a very important necessary condition. For the construction of such,
many conventional schemes have been employed, which mainly start from the equilibrium
equations of MHD (that is, the MHD equations (1.33)-(1.39) with vanishing temporal deriva-
tives), and then end up in equations of the Grad-Shafranov type [58], [59] by exploiting the
geometry of the confinement device in question. Nevertheless, another intriguing approach
is to exploit the non-canonical Hamiltonian structure that ideal Hall MHD possesses, with the
aim of utilising several variational principles for deducing equilibrium states. In that scope,
one can produce more general equilibrium equations and even carry out a stability analysis,
as per [28]. The identification of the Hamiltonian structure of the model in question is of
utmost importance, since it automatically ensures a correct interpretation for the variational
principle that one utilises. In the early times of theoretical plasma physics, most variational
principles were introduced in an ad hoc manner, based on physical arguing and conjectures.
Not until the development of non-canonical Hamiltonian theory was a rigorous mathematical
justification for these methods given.

In the present thesis we aim to construct equilibrium states for fusion plasmas in the frame-
work of Hall MHD, by exploiting the so-called Energy-Casimir variational principle. It will
be seen at a later chapter that not only our model of description gives rise to new physics in
our system, but that it even provides us with more ways of constructing realistic equilibrium
states that may be applicable for modern fusion devices, compared to the conventional and
widely employed ideal MHD model.

1.6 Thesis outline
This thesis is organised as follows: in the second chapter we present the key-principles

of the Hamiltonian formalism in the scope of ideal fluid models, with particular focus on the
non-canonical Hamiltonian structure that HallMHDpossesses. In light of the Energy-Casimir
variational principle, we then deduce equilibrium equations for axisymmetric two-fluid plas-
mas with incompressible ion flows. In the third chapter, we proceed to seek solutions to the
said equilibrium equations using a variety of mathematical tools and we also examine their
main traits. In the fourth chapter, we eventually apply the constructed solutions to Tokamaks
and FRCs using ITER and PFRC numerical values respectively. The construction of Tokamak-
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relevant equilibria is done by means of proper shaping methods, while for the Solovév type of
equilibrium we follow the footsteps of the respective static case. In the fifth, final chapter we
summarise the present study by presenting its basic conclusions, discussing possible appli-
cations of the solutions to realistic scenarios and finally by proposing certain future research
prospects.
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2
Equilibria construction via the Energy-Casimir

variational principle

Why look at fluid mechanics from a Hamiltonian
perspective? The simple answer is because it is

there and it is beautiful.

Philip J. Morrison

2.1 Hamiltonian formulation for ideal fluid models
Hamiltonian mechanics have been used extensively over the last two centuries and have

provided the necessary machinery for the establishment of many fields of physics, ranging
from particle motions to quantum mechanics and modern field theories. Its foundations lie in
the so-called Hamiltonian function of a physical system, which under certain conditions [60]
coincides with the total energy of the system, expressed in terms of generalised coordinates
andmomenta, that describe the state of the system. This description sheds light to the system’s
dynamical structure, since it helps us to identify constants of motion (also known as integrals
of motion) and provides a geometric interpretation of the dynamics that facilitate the study
of dynamical properties and phase-space structure. Below we start with presenting the stan-
dard, canonical Hamiltonian formalism for systems with finite degrees of freedom and then
we proceed with a generalisation to systems that are described by non-canonical variables. The
reason for this generalisation is our desire to create a proper formulation for the ideal Hall
MHD model (Section 1.4.3.3) in the Eulerian fluid description, in the scope of constructing
axisymmetric equilibrium states for fusion plasmas as the non-canonical Hamiltonian formu-
lation in the Eulerian picture provides a powerful variational method for deriving equilibrium
and stability conditions, namely the Energy-Casimir method which will be discussed later in
this chapter.

2.1.1 Canonical Hamiltonian description
Imagine that we are studying a dynamical system with N degrees of freedom, with coor-

dinates (qi, pi), where i = 1, 2, . . . N. It is said that the (independent) quantities (qi, pi) consti-
tute a set of canonically conjugate pairs that inhabit our system’s 2N-dimensional 1 phase space
Z , with qi being the (contravariant) canonical coordinate and pi being the (covariant) canon-
ical momentum. The covariant formalism has been employed here, in order to demonstrate

1It is therefore evident that a single degree of freedom corresponds to each (q, p) pair.
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the behaviour of these variables under coordinate transformations. Our system’s dynamics is
described by the well-known Hamilton’s equations, viz.

q̇i = {qi,H} =
∂H
∂pi

, ṗi = {pi,H} = −∂H
∂qi , (2.1)

whereH = H(qi, pi, t) is the Hamiltonian of our dynamical system and the dot is a shorthand
notation for temporal derivatives. In equations (2.1), we implicitly used the so-called Poisson
brackets, defined as

{F, G} =
∂F
∂qi

∂G
∂pi

− ∂F
∂pi

∂G
∂qi , (2.2)

for two arbitrary functionals 2 F and G [61]. Note that here and henceforth repeated indices are
to be summed 3 (Einstein summation convention). Poisson brackets have certain properties,
namely they are bilinear, antisymmetric, they obey the Leibniz rule and finally they satisfy the
Jacobi identity, namely

{F, {G, H}}+ {H, {F, G}}+ {G, {H, F}} = 0, (2.3)

where H is another arbitrary functional, not to be confused with the Hamiltonian H [28].
Poisson brackets are very important for the study of Hamiltonian systems because they control
the temporal evolution of any functional, say F. Truly, it can be corroborated [62] using the chain
rule that the rate of change of F(qi, pi, t) is

dF
dt

=
∂F
∂t

+
∂F
∂qi q̇i +

∂F
∂pi

ṗi =
∂F
∂t

+ {F,H}, (2.4)

in view of Hamilton’s equations (2.1) and the definition (2.2). In the case where there is no
explicit dependence from time t, the above result simply reads

dF
dt

= {F,H}. (2.5)

From relation (2.5) it can be seen that the Hamiltonian H is in fact the generator of time transla-
tions.

It is also interesting that Hamilton’s equations (2.1) can be put in symplectic form, by defin-
ing the coordinates in the phase space Z as follows

zi =

{
qi for i = 1, 2, . . . , N,
pi−N for i = N + 1, . . . , 2N.

(2.6)

Then, eqs. (2.1) read

żi = J ij
c

∂H
∂zj = {zi,H}, (2.7)

where the Poisson bracket is now defined as

{F, G} =
∂F
∂zi J

ij
c

∂G
∂zj , (2.8)

with

J ij
c =

(
0N 1N
−1N 0N

)
(2.9)

2A functional is essentially a function that takes other functions as arguments. Square brackets denote func-
tional dependence.

3In the case where our system possesses infinite degrees of freedom, i.e. N → ∞, then the summation is
replaced by an integral over the phase space. This will be the case later in non-canonical Hamiltonian description.
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being the co-symplectic form 4, also known as thePoisson operator, where 1N is the N × N identity
matrix and 0N is a N × N matrix of zeroes [28], [61]. This completes the basis of the canonical
Hamiltonian description.

2.1.2 Non-canonical Hamiltonian description
Canonically conjugate pairs are not always the most physically compelling kind of vari-

ables for studying physical systems; many theories are structured in non-canonical coordinates,
with fluid mechanics and plasma physics being two notable cases. For both, the Eulerian de-
scription is almost always employed, since it allows one to examine the motion of the fluid in
a convenient way considering fixed points in space, compared to the Lagrangian one, which
follows a fluid element through space and time. The latter specification is expressed entirely
in terms of canonical coordinates, while the former relies on fields, which comprise a set of
non-canonical variables. Hence, the question of how the formalism in Section 2.1.1 can be
generalised for fields in place of coordinates is raised. Such fields may be the velocity field
v or the magnetic field B of the Hall MHD model, presented in Section 1.4.3.3, etc. To illus-
trate this generalisation considering a system with finite degrees of freedom, let us assume a
coordinate transformation

zi → ui = ui(zi) (2.10)

in an N-dimensional phase space Z . Because for continua, like plasma, the phase space is
infinite dimensional (viz. N → ∞), a further generalisation will be given later. Under such a
coordinate transformation, the Hamiltonian transforms as a scalar, i.e.

H̃[ui] = H[zi]. (2.11)

In order to deduce Hamilton’s equations in non-canonical coordinates, we proceed by seeking
the time derivative of eq. (2.10)

u̇m =
∂um

∂zi żi (2.7)
=

∂um

∂zi J
ij

c
∂H
∂zj =

[
∂um

∂zi J
ij

c
∂un

∂zj

]
∂H
∂un . (2.12)

If we define

J mn =
∂um

∂zi J
ij

c
∂un

∂zj , (2.13)

relation (2.12) becomes

u̇m = J mn ∂H
∂un . (2.14)

One immediately observes that Hamilton’s equations have the same form and as amatter of fact,
they aremanifestly covariant. Furthermore, from eq. (2.13), one can see that the co-symplectic
operator transforms as a contravariant tensor of second rank; however in the non-canonical
Hamiltonian description, it is evident that the new Poisson operator (2.13) now may depend
on the the non-canonical variables: J mn = J mn[ui]. In this frame, the non-canonical Poisson
brackets are defined as

{F, G} =
∂F
∂ui J

ij ∂G
∂uj , (2.15)

for arbitrary functionals F and G. Finally, the temporal evolution of a functional has the same
form as eq. (2.5).

4The subscript c of Jc indicates that we have used canonical coordinates for describing our system.
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Since fluid models involve an infinite number of degrees of freedom, we shall resort to a
generalisation upon introducing the functional Poisson bracket

{F, G} =

ˆ
dν

δF
δui J

ij δG
δuj , (2.16)

where ν denotes spatial or in general Eulerian coordinates. For this generalisation it is neces-
sary to define the functional derivative δF

δu through the first variation δF, as

δF = lim
ϵ→0

F[u + ϵδu]− F[u]
ϵ

=

ˆ
dν

δF
δu

δu. (2.17)

The functional derivative is in essence the rate of change of a functional F for a change on
the function on which F depends on, δu. We also state that the properties of antisymmetry,
bilinearity and the Jacobi identity (2.3) still hold for infinite degrees of freedom [28], [61].

2.1.3 The Energy-Casimir variational principle
Let us suppose that we study a N-degree of freedom system for which there exist N inde-

pendent conserved quantities, hence its dynamical evolution can be determined analytically.
Systems of this kind are known in the literature [63], [64] as integrable Hamiltonian systems,
and in this case, it has been established [61] that the motion takes place on an N-dimensional
manifold, known as N-torus 5 immersed in the 2N-dimensional phase space Z . In general,
the trajectories of the system lie on the leaves of the foliation, i.e., they move within a given
level set of the Hamiltonian function H. In the framework of non-canonical Hamiltonian de-
scription, the previously mentioned dependence of the Poisson operator on the variables of
our system gives rise to a class of invariant quantities that are built in Z and induce a folia-
tion of the phase-space into sub-manifolds (Casimir leaves) whereon they are constant. Those
quantities are known as Casimir invariants [61], and their gradients span the null space of
the Poisson operator. In other words,

J ij δCk

δuj = 0. (2.18)

Owing to the property (2.18), it can be readily seen from the very definition of the Pois-
son brackets (2.15) that the Casimir invariants commute with any arbitrary functional F, i.e.
{Ck, F} = 0 ∀ F. This in turn means that the Casimir invariants are kinematic constants of
motion, since

Ċk = {C,H} =

ˆ
dν

δCk

δui J
ij[ui]

δH
δuj = 0, (2.19)

for every Hamiltonian H. At this point it becomes apparent that the Casimir invariants Ck

confine the system’s trajectories in the phase space Z on surfaces where Ck = const., and that
they play a crucial role in the dynamical evolution of our system [28], [61]. Their usefulness
is not exhausted there; if one seeks equilibrium points for a functional F, that is points where
Ḟ = 0, then in view of relations (2.5) and (2.16), it follows that

J ij δH
δuj = 0. (2.20)

5This kind of systems is the counterpart of chaotic ones, for which the trajectories ”wander in a seemingly
random way” and the N-tori cease to exist. They are characterised by a sensitive dependence on initial conditions
[61].
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However, owing to relation (2.18), equation (2.20) does not give us all the possible equilibrium
points since

J ij δ

δuj

(
H+

∑
k

Ck

)
= 0, (2.21)

is also satisfied. A solution to (2.21) is

δ(H+
∑

k

Ck) = 0. (2.22)

One may introduce some arbitrary Lagrange multipliers µk to the above equation. Then, any
point ue that satisfies

δ(H−
∑

k

µkCk)[ue] = 0. (2.23)

is an equilibrium point. Equation (2.23) is the Energy-Casimir variational principle [28],
[61], [65]. Note however that this condition is sufficient but not necessary for equilibrium, viz. there
exist equilibrium points ũe that do not satisfy (2.23). This variational principle comprises the
cornerstone of the current thesis, and will be used in the next section for the deduction of
equilibrium states in the framework of the ideal Hall MHD model.

2.2 Axisymmetric Hall MHD equilibria
On the basis of the Energy-Casimir variational principle presented in the previous sec-

tion, we may proceed at this point to the construction of Hall MHD equilibrium states for
axisymmetric confinement devices. Also, recall that we are interested in equilibrium states
with constant density, i.e. ρ = 1, which - albeit a crude approximation - significantly simpli-
fies our computations. In this scope, we write down the Hamiltonian in the frame of Alfvén
units, per Section 1.4.3.2, as

H =
1
2

ˆ
S

d2x (ρv2 + B2), (2.24)

where S is our computational domain, which in our case is a cross section of the toroidal
system [28]. The key assumption here is that of axisymmetry, which is summarised by relation
(1.20) and was thoroughly discussed in Section 1.3.2.1. Axisymmetry limits our analysis to a
specific cross section of the toroidal system 6, and it allows us to exploit the so-called poloidal
representations for our twofields of interest, viz. themagnetic field B and the ion fluid velocity
v, which read

B = RBϕ∇ϕ +∇Ψ ×∇ϕ, and (2.25)
v = Rvϕ∇ϕ +∇X ×∇ϕ, (2.26)

where Ψ is the flux function for the magnetic field, already defined in Section 1.3.2.1; however,
the ion velocity v is also a key-component of theHallMHDmodel and thus it will be described
by another flux function X , to which we attribute a similar physical interpretation with Ψ. In

6Since the topology of the magnetic surfaces does not change from one cross section to another.
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addition, we used the shorthand notation of ∇ϕ = eϕ/R. Substituting the representations
(2.25) and (2.26) in (2.24) results in

H =
1
2

ˆ
S

d2x
(

ρv2
ϕ + B2

ϕ +
|∇Ψ|2

R2 + ρ
|∇X |2

R2

)
. (2.27)

In the presence of axisymmetry, the Hall MHDCasimir invariants have been previously found
in [66] and read

C1 =

ˆ
S

d2x (R−1Bϕ + diΩ)F (Φ), C2 =

ˆ
S

d2x R−1BϕG(Ψ),

C3 =

ˆ
S

d2x ρM(Φ), and C4 =

ˆ
S

d2x ρN (Ψ),

(2.28)

where F , G, M and N are free functions and Ω = (∇ × vp) ·∇ϕ = − 1
R2 ∆⋆X , with vp =

∇X ×∇ϕ being the poloidal component of the velocity field and ∆⋆ ≡ R2∇ · (∇/R2) is the
so-called Shafranov operator. It turns out that it is convenient to writeH and C1 in terms of vp
rather than X , although the two representations are completely equivalent. We also defined
another flux function, Φ, as

Φ = Ψ + diRvϕ. (2.29)

In Section 1.4.3.2, we thoroughly discussed the separation of the ion fluid from the electron
one, which is introduced in the framework of the Hall MHD model. It transpires that, apart
from the electronfluid,which is described by the so-calledmagnetic surfaces (see Section 1.3.2.1),
the ion fluid - which has different properties from the electron one - can also be described by
another flux function, apart fromX . That function is no other than Φ. With that being said, we
expect to notice another kind of surfaces in our computations, namely ion velocity field surfaces,
which will become clear in Chapter 4.

For the deduction of the equilibrium equations we shall employ the Energy- Casimir vari-
ational principle (2.23), with the addition of the plasma pressure as a Lagrange multiplier in
such a manner, that the restriction of ρ = 1 follows directly from the variation, or:

δ

H−
∑

i

Ci +

ˆ
S

d2x P(ρ − 1)

 = 0. (2.30)

With that being said, a direct substitution of eqs. (2.27) and (2.28) to (2.30) yields

δ

ˆ
S

d2x

{
ρ

v2
ϕ

2
+

B2
ϕ

2
+

|∇Ψ|2
2R2 + ρ

|vp|2

2
− (R−1Bϕ + diΩ)F (Φ)−

− R−1BϕG(Ψ)− ρM(Φ)− ρN (Ψ) + P(ρ − 1)

}
= 0.

(2.31)

If we impose that the field-variables (Ψ, Bϕ, vϕ, vp, P, ρ) vary up to first order, eq. (2.31) is
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modified, after employing some vector analysis manipulations, to

ˆ
S

d2x

{
ρvϕ δvϕ +

v2
ϕ

2
δρ + Bϕ δBϕ +

1
R2∇Ψ ·∇δΨ + ρvp · δvp +

|vp|2

2
δρ

− R−1FδBϕ − di(∇× δvp) · (F∇ϕ)− R−1GδBϕ−

− R−1BϕG ′δΨ − [R−1Bϕ + di(∇× vp) ·∇ϕ]F ′δΨ−

− [R−1Bϕ + di(∇× vp) ·∇ϕ]diRF ′δvϕ−

− ρM′δΨ − diRρM′δvϕ − ρN ′δΨ −Mδρ −N δρ + Pδρ + (ρ − 1)δP

}
= 0,

(2.32)

where we used the commutativity of the operators ∇ and δ and the chain rule as well. The
prime denotes differentiation with respect to either Ψ or Φ - depending on the free function.
Our goal is to factorise relation (2.32) in terms of the different variations, in order to collect
terms and subsequently perform integrations by parts wherever it is necessary so that the
variations of the field variables appear outside operators, namely

ˆ
S

d2x

{
[ρvϕ − (R−1Bϕ + diΩ)diRF ′ − dirρM′]δvϕ+

+ [Bϕ − R−1F − R−1G]δBϕ + [ρvp − di∇F ×∇ϕ] · δvp−

−
[
∇
(
∇Ψ
R2

)
+ R−1BϕG ′ + (R−1Bϕ + diΩ)F ′ + ρM′ + ρN ′

]
δΨ+

+

[
v2

ϕ

2
+

|vp|2

2
−M−N + P

]
δρ+

+ (ρ − 1)δP

}
+

˛
∂S

f (δΨ, δvp) · dℓ = 0.

(2.33)

The second line integral in (2.33) is evaluated at the boundary ∂S of our domain and is equal
to zero if we impose appropriate boundary conditions in the variations δΨ and δvp such, that
the boundary terms stemming from the integration by parts vanish. The first surface integral
in (2.33) equals to zero for arbitrary and independent variations δΨ, δBϕ, δvϕ, δvp, δρ and δP,
only if the coefficients of the variations vanish identically. In other words,

δvϕ : ρvϕ − diR(R−1Bϕ + diΩ)F ′ − diRρM′ = 0, (2.34)
δBϕ : Bϕ − R−1F − R−1G = 0, (2.35)

δΨ : ∇ ·
(
∇Ψ
R2

)
+ R−1BϕG ′ + (R−1Bϕ + diΩ)F ′ + ρ(M′ +N ′) = 0, (2.36)

δvp : ρvp − di∇F ×∇ϕ = 0, (2.37)

δρ : P = M+N − v2

2
(2.38)

δP : ρ = 1. (2.39)

Therefore we can set ρ = 1 for our calculations, in view of (2.39). From equation (2.35), we
immediately obtain

Bϕ = R−1(F + G). (2.40)
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We can also recover a similar expression for the toroidal component of the velocity field, by
exploiting relation (2.29)

vϕ =
Φ − Ψ

diR
. (2.41)

The poloidal fields Bp, vp are essentially the second terms in the RHS of the representations
(2.25), (2.26). In addition, from eq. (2.37) we obtain

vp = ∇X ×∇ϕ = di∇F ×∇ϕ ⇒ X = diF , (2.42)
up to an integration constant which we set equal to zero, due to the arbitrariness of F . If we
now recall that

Ω = (∇× vp) ·∇Ψ = −∆⋆X/R2 = ∇ · (∇X/R2), (2.43)
and use eq. (2.42) in conjunction with (2.40), relation (2.34) becomes

vϕ − diR−1(F + G)F ′ + d3
i RF ′∇ ·

(
∇F
R2

)
− diRM′ = 0. (2.44)

Then, eq. (2.44) leads to the first Grad-Shafranov equation

d2
i F ′(Φ)R2∇ ·

[
F ′(Φ)

∇Φ
R2

]
− [F (Φ) + G(Ψ)]F ′(Φ)−M′(Φ)R2 +

Φ − Ψ
d2

i
= 0,

(2.45)

where the chain rule ∇F = F ′∇Φ has been used. Furthermore, from eqs. (2.36) and (2.40),
we have

∇ ·
(
∇Ψ
R2

)
+ R−2(F + G)G ′ +M′ +N ′ + (R−1Bϕ + diΩ)F ′ = 0, (2.46)

which, in the light of equation (2.34), leads to the second Grad-Shafranov equation

∆⋆Ψ + [F (Φ) + G(Ψ)]G ′(Ψ) +N ′(Ψ)R2 +
Φ − Ψ

d2
i

= 0. (2.47)

The pressure inside the axisymmetric fusion device is given from (2.38), or

P = M(Φ) +N (Ψ)− v2

2
. (2.48)

Relations (2.45), (2.47) and (2.48) comprise aGrad-Shafranov Bernoulli (GS-Bernoulli)
system. For the rest of the current thesis, we shall concern ourselves with the self-consistent
solution of the system of equations (2.45) and (2.47), which are second-order partial differ-
ential equations of the elliptic type. The total plasma pressure P inside the fusion device is
given by relation (2.48), from which one can notice that P has two contributions; one from
the dynamical pressure v2/2 that is attributed to the velocity v of the ion fluid, as well as a
contribution from the free functions M(Φ) and N (Ψ) introduced in the framework of the
Hall MHD model. At this point, it is becoming evident why we chose the Hall MHD model
(among other reasons, discussed extensively in Section 1.5): for the freedom it gives us for
the construction of the desired pressure profile in magnetic confinement fusion. Such a pres-
sure profile is peaked on the magnetic axis, which in turns means that the temperature has
a maximum in the centre of the formation, and therefore the cross-section of thermonuclear
reactions is sufficiently high.
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2.3 Ansatz for the free functions - Equilibria cases
The GS-Bernoulli system (2.45), (2.47) and (2.48) contains 4 functions F ,G,M,N that

are completely arbitrary, in the sense that the Hall MHD model does not provide us with any
insight whatsoever about their form; in order to proceed, one shall make a choice (ansatz)
for them. Furthermore, it becomes apparent that the ansatz that we make will be crucial for
the topology and the characteristics of the equilibrium, as well as the construction of a de-
sired pressure profile, as discussed above. Henceforward, we will adopt the following general
ansatz for our free functions

F (Φ) = f0 + f1 Φ, (2.49)
G(Ψ) = g0 + g1 Ψ, (2.50)

M(Φ) = m0 + m1Φ +
1
2

m2Φ2, (2.51)

N (Ψ) = n0 + n1Ψ +
1
2

n2Ψ2, (2.52)

where f0, f1, g0, g1, m0, m1, m2, n0, n1, n2 ∈ R are free constant parameters 7. It is note-
worthy that f0 and g0 are related to the vacuum toroidal magnetic field, i.e. the toroidal magnetic
field needed for confinement in the absence of plasma 8. A selection such that f0 + g0 ̸= 0
results in a Tokamak-relevant configuration, while a selection for which f0 + g0 = 0 results in
a Spheromak-like one. Moreover, m0 and n0 are used in the determination of the pressure pro-
file, while the rest of the parameters f1, g1, m1, m2, n1, n2 come into play for the calculation
of the vector fields, like B, v, etc.

The general ansatz (2.49)-(2.52) gives us a lot of flexibility for the choice of the free param-
eters, since many different types of equilibria arise. On this basis, we briefly list some notable
cases of equilibrium that will be studied rigorously in the chapter to follow:

1. Equilibria with m1 ̸= 0, n1 ̸= 0, m2 = n2 = 0: A Double Beltrami system of coupled
Grad-Shafranov equations is recovered. The solution for the flux functions is written as
a superposition of Beltrami fields.

2. Equilibria with m1 ̸= 0, n1 ̸= 0, m2 ̸= 0, n2 ̸= 0 and g1 = −1/(d2
i f1): This selection

for the free parameter g1 decouples the system of the two Grad-Shafranov equations
(2.45) and (2.47). The solution for each homogeneous equation is expressed in terms of
theWhittaker functions. The particular solution for the non-homogeneous equation can
be found by a similarity reduction procedure, as per [67], and a certain constraint must
hold for the coefficients in order for each particular solution to satisfy both of the two
non-homogeneous Grad-Shafranov equations. For the special case of m1 = n1 = 0, we
derive equilibria that correspond to Spheromak configurations.

3. Equilibria with m1 ̸= 0, n1 ̸= 0, m2 = n2 = 0, f1 = 1/di = −g1: Solovév type
of equilibrium [68] for both flux functions Ψ and Φ. The solution has two up-down
symmetric saddle points (X-points). The free parameters should be chosen - if possible
- in such a manner that the X-points which correspond to Ψ and Φ coincide.

4. Generic equilibria with m1 ̸= 0, n1 ̸= 0, m2 ̸= 0, n2 ̸= 0: Notwithstanding the
generality of this case, the GS-Bernoulli system remains analytically tractable, and con-
figurations with closed magnetic and ion velocity surfaces can be recovered when some
specific criteria are met for the free parameters.

7Due to the normalisation scheme of Section 1.4.3.2, these free parameters are also dimensionless.
8To be exact, the vacuum toroidal magnetic field is equal to ( f0 + g0)/R, see relation (2.40).
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3
A family of analytic solutions to the
Grad-Shafranov-Bernoulli system

Equilibrium is the essence of a thermodynamic system.
The system seeks it, strives for it, tends towards it; in the
process, it evolves towards higher levels of organization.

Ilya Prigogine

Having presented four notable types of axisymmetric Hall MHD equilibrium in Section
2.3, we now proceed to seek solutions for each of the said cases. Owing to this diversity of
solutions, we will exploit various mathematical tools in each of the following sections in order
to solve the systems of differential equations that arise. We will also discuss the general be-
haviour of the solutions in question with the aim of applying the latter in axisymmetric fusion
devices.

3.1 Double Beltrami equilibria

3.1.1 Direct derivation of the double Beltrami system via the Energy-Casimir vari-
ational principle

Webegin by examining the first kind of solutions that satisfy the system of equations (2.45)
and (2.47). It will be readily seen that this kind of solutions is closely related to vector fields
A that are eigenvectors of the curl operator. In other words,

∇×A = λiA, (3.1)

where λi are the respective eigenvalues. This kind of fields are known in the literature as
Beltrami fields [69], [70], and for an ideal MHD plasma they are homonymous to the so-
called force-free [71] states, i.e. states where the Lorentz force (1.27) vanishes. Those states
are widely employed in Solar Physics [72], for the needs of magnetic field extrapolations in the
solar corona. It has been established by Woltjer in 1958 [73] that plasmas tend to relax, or self-
organise to such states when the total plasma energy is conserved under the constraint that the
magnetic helicity remains constant. He proved that in the scope of ideal MHD, the magnetic
helicity is conserved locally, while Taylor [74] conjectured that in a plasma with some kind of
dissipation, although the magnetic helicity is not conserved locally, it is conserved globally.
This is the well-known Taylor conjecture and those states are known in the literature as Taylor
states. It should be stressed however, that self-organisation into Taylor states is not a general
tendency of plasmas, and it only occurs under very specific conditions [75].
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In our case, we aim to repeat this process for two-fluid (Hall MHD) plasmas in the light
of the Energy-Casimir variational principle (2.23), in order to deduce the double Beltrami
states, which are essentially superpositions of the ordinary Beltrami ones (3.1). This deriva-
tion demonstrates the sheer power this variational principle possesses. We start by considering
the standard Hamiltonian (2.24) of our model for ρ = 1; however, the Casimir invariants will
now be the the helicity of the magnetic field [4], [5]:

C1 =
1
2

ˆ
S

A · B d2x, (3.2)

where A is the vector potential, and the so-called ion helicity [76], which intertwines the topo-
logical properties of the magnetic and the velocity field:

C2 =
1
2

ˆ
S

(A + div) · (B + di∇× v) d2x. (3.3)

This derivation was motivated by the work presented in [75], [76], [77] where multi-Beltrami
states are treated in the context of ad hoc variational principles for two-fluid plasmas. A dis-
cussion for the proper functional that has to be minimised (target functional) is also done,
which however does not concern us in the present work since we are working in the scope of
the Energy-Casimir variational principle, which already provides us with a basis to interpret
the variation correctly in terms of the physics that govern the system in question.

With that being said, we proceed by substituting the two Casimir invariants (3.2) and (3.3)
to (2.23) and varying only the vector potential, A and the ion velocity field, v as follows

δ

ˆ
S

d2x
[
(∇× A)2

2
+

v2

2
− µ1

2
(A ·∇× A)− µ2

2
(A + div) · (∇× A + di∇× v)

]
= 0

⇒

ˆ
S

d2x

[
(∇× A) · (∇× δA)︸ ︷︷ ︸

1

+v · δv − µ1

2
(δA ·∇× A + A ·∇× δA)−

− µ2

2
(δA ·∇× A + A ·∇× δA + di δA ·∇× v + di A ·∇× δv + di δv ·∇× A+ (3.4)

di v ·∇× δA + d2
i δv ·∇× v + d2

i v ·∇× δv)

]
= 0

The first term in the second equation of (3.4) can be written as

1 =

ˆ
S

d2x [(∇× A) · (∇× δA)] =

ˆ
S

d2x B · (∇× δA). (3.5)

Using the vector identity: ∇ · (a × b) = b · (∇× a)− a · (∇× b), one gets

1 =

ˆ
S

d2x [∇ · (δA× B) + δA · (∇× B)] =

˛
∂S

(δA× B) · dS+

ˆ
S

d2x δA · (∇× B). (3.6)

If we further suppose that the variation on the boundary ∂S vanishes, i.e. δA|∂S = 0, then the
surface term has no contribution whatsoever and therefore

1 =

ˆ
S

d2x δA · (∇× B). (3.7)
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Working similarly for the other five terms, we find similar results. Our goal is to factorize the
integral in (3.4), with the two variations as common factors. More specifically we end up at

ˆ
S

d2x
{
[∇× B − (µ1 + µ2)B − µ2 di(∇× v)] · δA + [v − µ2 diB − µ2 d2

i (∇× v)] · δv
}
= 0.

(3.8)
Given that the above equation must hold for arbitrary and independent variations δA and δv,
we have:

∇× B − (µ1 + µ2)B − µ2 di(∇× v) = 0

v − µ2 diB − µ2 d2
i (∇× v) = 0.

(3.9)
(3.10)

By solving relation (3.10) with respect to B, we find:

B =
1

µ2di
v − di(∇× v). (3.11)

Owing to (3.11), the two equations (3.9) and (3.10) can be easily decoupled. We observe that
the two fields satisfy in fact the same differential equation:

∇×∇×V + b1(∇×V) + b2V = 0, (3.12)

where V is either the magnetic field B or the velocity field v and:

b1 = −µ1 −
1

µ2d2
i

and b2 =
µ1 + µ2

µ2d2
i

(3.13)

are constants. Eq. (3.12) is known in the literature as the ”double Beltrami equation”, since
the double curl operator appears. Although B and v satisfy the same differential equation,
we must stress that they are different entities as vector fields, since they are interconnected by
equation (3.11), which is compatible with (3.12).

3.1.2 Double Beltrami system in terms of the flux functions
In order to solve the system of equations (3.9) and (3.10), we need to express the later in

terms of the flux functions Ψ and X . For that, we will need the poloidal representations of the
two fields, given by relations (2.25) and (2.26). Substituting these and their curls:

∇× B = ∇(RBϕ)×∇ϕ − ∆⋆Ψ ∇ϕ, (3.14)
∇× v = ∇(Rvϕ)×∇ϕ − ∆⋆X ∇ϕ (3.15)

into eqs. (3.9) and (3.10) results in

− ∆⋆Ψ ∇ϕ +∇(RBϕ)×∇ϕ = µ1RBϕ∇ϕ + µ1∇Ψ ×∇ϕ +
1
di

(
Rvϕ∇ϕ +∇X ×∇ϕ

)
,

(3.16)

∆⋆X ∇ϕ −∇(Rvϕ)×∇ϕ = − 1
d2

i µ2

(
Rvϕ∇ϕ +∇X ×∇ϕ

)
+

1
di
(RBϕ∇ϕ +∇Ψ ×∇ϕ).

(3.17)

By projecting equations (3.16) and (3.17) to the directions parallel and perpendicular to ∇ϕ
and substituting back the results, we find
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∆⋆Ψ = −µ1

(
µ1Ψ +

1
di
X + γ

)
− 1

di

(
1

d2
i µ2

X − Ψ
di

+ δ

)
, (3.18)

diµ2 ∆⋆X = − 1
di

(
1

d2
i µ2

X − 1
di

Ψ + δ

)
+ µ2

(
1
di
X + µ1Ψ + γ

)
, (3.19)

where γ and δ are two integration constants which we have the freedom to set equal to zero.
By arranging terms, we end up at

∆⋆Ψ = −
(

µ2
1 −

1
d2

i

)
Ψ −

(
µ1

di
+

1
d3

i

)
X , (3.20)

diµ2 ∆⋆X =

(
µ1µ2 +

1
d2

i

)
Ψ +

1
di

(
µ2 −

1
d2

i µ2

)
X . (3.21)

Let us now return to the initial system of equations (2.45) and (2.47), and adopt the ansatz
(2.49)-(2.52) for m2 = n2 = 0. Then the system in question reduces to

∆⋆Ψ = −g1( f0 + g0)− g1( f1Φ + g1Ψ)− n1R2 − Φ − Ψ
d2

i
, (3.22)

d2
i f 2

1 ∆⋆Φ = f1( f0 + g0) + f1( f1Φ + g1Ψ) + m1R2 − Φ − Ψ
d2

i
. (3.23)

For the purposes of this section, we will use the flux function X instead of Φ. Both describe
the ion velocity field and are interconnected through relation (2.42). Thus we can substitute
Φ = X−di f0

di f1
on eqs. (3.22), (3.23) and end up at

∆⋆Ψ = −
(

g2
1 −

1
d2

i

)
Ψ −

(
g1

di
+

1
f1d3

i

)
X −

(
g0g1 −

f0

d2
i f1

)
− n1R2,

di f1 ∆⋆X =

(
f1g1 +

1
d2

i

)
Ψ +

(
f1

di
− 1

f1d3
i

)
X +

(
f1g0 +

f0

d2
i f1

)
+ m1R2.

(3.24)

(3.25)

Notice that the homogeneous system of equations (3.24) and (3.25) is identical to the system
of eqs. (3.20) and (3.21), for f1 = µ2 and g1 = µ1. Hence, relations (3.24) and (3.25) describe the
equilibrium state of a double Beltrami system. Wewill initially seek a general solution to the homo-
geneous counterpart of eqs. (3.24) and (3.25), and then we shall proceed to find a particular
solution to the respective non-homogeneous system. There exist two ways (among many oth-
ers) to solve the homogeneous system; either by expressing the two fields as superpositions
of Beltrami fields, or by exploiting the eigenvectors of the Shafranov operator. The first way is
discussed here, while the latter is presented in Appendix A.

3.1.3 Solution to the double Beltrami equations

3.1.3.1 Homogeneous system

Let A be a Beltrami field, viz. a field that satisfies relation (3.1). We require that the
Beltrami field A satisfies the Double Beltrami equation (3.12). Direct substitution of relation
(3.1) at (3.12), along with the requirement that A is other than the zero vector, yields the
quadratic equation:

λ2 + b1λ + b2 = 0, (3.26)
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from which we deduce the two eigenvalues of the curl operator

λ± =
−b1 ±

√
b2

1 − 4b2

2
. (3.27)

These two eigenvalues correspond to two Beltrami vectors,A±, respectively. The main notion
which we will adopt to solve the system of the two double Beltrami equations is that the two
fields B and v can be written as a linear combination of the two Beltrami fields A±. For the
velocity field, we suppose that

v = c+A+ + c−A−, (3.28)

where c± are two arbitrary constants. The magnetic field 1 is found via eqs. (3.11) and (3.28):

B = c+

(
1

f1di
− diλ+

)
A+ + c−

(
1

f1di
− diλ−

)
A−. (3.29)

The introduction of the twoBeltrami vectorsA± has a very interesting consequence; instead of
trying to specify the two vector fields B and v, it prompts us to try to derive a Grad-Shafranov
equation for the vectors A±. Having they been specified, one can easily find the magnetic
and the velocity fields via eqs. (3.29) and (3.28). Although the following analysis concerns
an axisymmetric system, a generalisation for helical symmetry can be found in Appendix B.

Axisymmetry allows one to exploit the poloidal representations for the Beltrami vectors
A± as

A± = RA±ϕ∇ϕ +∇Ψ± ×∇ϕ, (3.30)
where Ψ± are the flux functions describing the two Beltrami vectors. The curl of (3.30) is
written as

∇×A± = −∆⋆Ψ±∇ϕ +∇(RA±ϕ)×∇ϕ. (3.31)
Nevertheless, since A± are Beltrami vectors, then by their very definition eq. (3.1) should
hold as well. Therefore, equating relations (3.1) and (3.31) results in

−∆⋆Ψ±∇ϕ +∇(RA±ϕ)×∇ϕ = λ±RA±ϕ∇ϕ + λ±∇Ψ± ×∇ϕ. (3.32)
A projection of relation (3.32) along the direction of ∇ϕ yields

−∆⋆Ψ± = λ±R A±ϕ, (3.33)
while a projection of (3.32) along the direction normal to ∇ϕ yields:

A±ϕ =
1
R

λ±Ψ±. (3.34)

By combining relations (3.33) and (3.34), we arrive at the desired Grad-Shafranov equation
for the flux functions Ψ±

∆⋆Ψ± = −λ2
±Ψ±. (3.35)

Equation (3.35) is a second order partial differential equation of the elliptic type, and it is
written, in the cylindrical coordinate system that we adopted, as

∂2Ψ±
∂R2 − 1

R
∂Ψ±
∂R

+
∂2Ψ±
∂Z2 = −λ2

±Ψ±. (3.36)

1Note however that the two fields recovered by relations (3.28) and (3.29) stem only from the homogeneous
part of the system; one needs to solve the non-homogeneous one as well in order to attain the full expression for
the fields.
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We can solve eq. (3.36) by means of the well-known separation of variables method [78], [79].
Let 2

Ψ±(R, Z) = F±(R)G(Z). (3.37)
Then, our Differential Equation reads

1
F±(R)

d2F±
dR2 − 1

RF±(R)
dF±
dR

+ λ2
± = − 1

G(Z)
d2G
dZ2 . (3.38)

Setting the separation constant equal to k2, where k ∈ R, we deduce two equations

d2F±
dR2 − 1

R
dF±
dR

+ (λ2
± − k2)F±(R) = 0, (3.39)

and

d2G
dZ2 + k2G(Z) = 0. (3.40)

In order to find solutions for (3.39), we ought to further investigate the sign of the term λ2
±− k2.

On the one hand, if λ2
± − k2 > 0 ⇒ λ2

± > k2, the solutions are Bessel functions 3 of the first
and second kind and of first order, J1(x) and Y1(x) respectively. Hence,

F±
k (R) = R

[
c±1 J1

(
R
√

λ2
± − k2

)
+ c±2 Y1

(
R
√

λ2
± − k2

)]
. (3.41)

On the other hand, if λ2
± − k2 < 0 ⇒ λ2

± < k2, the respective radicand in (3.41) is negative,
whichmeans that the argument of the Bessel functions is a complex number. This fact prompts
us to seek as solutions modified Bessel functions [78] of the first and second kind and of first
order, I1(x) and K1(x) respectively:

F̃±
k (R) = R

[
c̃±1 I1

(
R
√

λ2
± − k2

)
+ c̃±2 K1

(
R
√

λ2
± − k2

)]
. (3.42)

In contrast to the oscillatory behaviour of the ordinary Bessel functions, the modified Bessel
functions exhibit an exponential behaviour [78]. As concerns eq. (3.40), its solutions are of the
well-known plane-wave type

Gk(Z) = d1 cos (kZ) + d2 sin (kZ), (3.43)

where c±1 , c±2 , c̃±1 , c̃±2 , d1, d2 are constants.
However, there exists another family of solutions to (3.35) which is obtained directly if

we perform analytic continuation on k, that is k → ik. By performing this trick, we assume
that our separation constant is a pure imaginary number 4. From another point of view, the
fact that the separation constant has an imaginary part is ultimately equivalent to selecting
−k2 instead of k2 when solving (3.39). Both selections are equally correct since the foresaid
constant is arbitrary a priori. The assumption of the complex nature of the separation constant
covers both cases - and has valid mathematical grounds! With that being said, the two ODEs
that stem from the imaginary part of the separation constant are

d2F′
±

dR2 − 1
R

dF′
±

dR
+ (λ2

± + k2)F′
±(R) = 0, (3.44)

2The reason the subscript ± appears only in the radial part is to be understood soon.
3In fact, when one studies Beltrami fields, they will eventually encounter Bessel functions; which are usually

recovered as solutions to such fields. Bessel functions are well studied, and most Mathematical Physics textbooks
cover them, e.g. see [78] and [80]. Their behaviour resembles that of sines and cosines, divided by powers of the
independent variable.

4However, one must exercise caution to realise that still k ∈ R! We just replaced k → k̃ = ik, with k̃ ∈ C.
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where the prime denotes a different function and not differentiation with respect to some
variable, and

d2G′

dZ2 − k2G′(Z) = 0. (3.45)

In regard to eq. (3.44), the sum of λ2
± and k2 is always positive, therefore the solutions will be

the ordinary Bessel functions

F
′±
k (R) = R

[
c
′±
1 J1

(
R
√

λ2
± + k2

)
+ c

′±
2 Y1

(
R
√

λ2
± + k2

)]
, (3.46)

while for eq. (3.45) we have as solutions increasing and decreasing exponentials

G′
k(Z) = d′1 ekZ + d′2 e−kZ, (3.47)

where c
′±
1 , c

′±
2 , d′1, d′2 are some other constants.

Finally, we must emphasize that there exists another kind of solution for the special case
of λ± = +k or λ± = −k, which reads

ρ(R) = A1R2 + A2, (3.48)

where A1, A2 are constants.
Summing up, themost general solution one can assume for the two Beltrami flux functions

is a linear combination of the aforementioned solutions, assuming k ∈ N:

Ψ±(R, Z) =
N∑

k ̸=λ±
k ̸=−λ±

{[
F±

k (R) + F̃±
k (R) + F

′±
k (R)

]
·
[
Gk(Z) + G′

k(Z)
]}

+ [A1R2 + A2]·

· [A3 cos(λ±Z) + A4 sin(λ±Z)].
(3.49)

Now we can proceed to find the desired quantities, viz. the solutions Ψh, Xh to the homo-
geneous counterpart of (3.22), (3.23). The axisymmetric magnetic field is given by relation
(3.29), therefore its toroidal component will be

Bϕ = c+

(
1

f1di
− diλ+

)
A+ϕ + c−

(
1

f1di
− diλ−

)
A−ϕ. (3.50)

Due to eq. (3.34), relation (3.50) becomes

Bϕ =
1
R

[
c+

(
1

f1di
− diλ+

)
λ+Ψ+ + c−

(
1

f1di
− diλ−

)
λ−Ψ−

]
, (3.51)

from which we straightforwardly read the axisymmetric flux function

Ψh = c+

(
1

f1di
− diλ+

)
Ψ+ + c−

(
1

f1di
− diλ−

)
Ψ−. (3.52)

Concerning the axisymmetric velocity field, we can utilise the poloidal representation (2.26).
Equivalently, due to (3.28), we have

v = c+A+ + c−A− =
(

c+R A+ϕ + c−R A−ϕ

)
∇ϕ +∇(c+Ψ+ + c−Ψ−)×∇ϕ (3.53)
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Therefore, the toroidal component of the velocity field is vϕ = c+A+ϕ + c−A−ϕ, or:

vϕ =
1
R
(c+λ+Ψ+ + c−λ−Ψ−) , (3.54)

from which we straightforwardly read the axisymmetric flux function for the velocity field:

Xh = c+Ψ+ + c−Ψ−. (3.55)

3.1.3.2 Non-homogeneous system

We shall now figure out a particular solution to the non-homogeneous double Beltrami
system (3.24), (3.25). In this regard, let

A1 = −
(

g0g1 −
f0

d2
i f1

)
, A2 =

(
f1g0 +

f0

d2
i f1

)
, B1 = −n1, and B2 =

m1

di f1
. (3.56)

Using also the coefficients (A.2) defined in Appendix A, the system assumes the form

∆⋆

(
Ψ
X

)
=

(
W1 W2
W3 W4

)(
Ψ
X

)
+

(
A1
A2

)
+

(
B1
B2

)
R2. (3.57)

We impose that the particular solutions have the following form

Ψp = Ψp(R) = αR2 + β, Xp = Xp(R) = γR2 + δ, (3.58)

where α, β, γ, δ are coefficients that we want to specify. The main concept is the requirement
that the solutions (3.58) satisfy the system (3.57). As a matter of fact, one can observe an
interesting consequence of this selection for the particular solutions, viz. that

∆⋆Ψp =
d2Ψp

dR2 − 1
R

dΨp

dR
= 0, (3.59)

and similarly for ∆⋆Xp. Consequently, we can set the LHS of (3.57) equal to zero and recover
the following system of algebraic equations

W1αR2 +W1β +W2γR2 +W2δ + A1 + B1R2 = 0, (3.60)
W3αR2 +W3β +W4γR2 +W4δ + A2 + B2R2 = 0. (3.61)

Solving the system (3.60), (3.61) with respect to the unknown coefficients, we find

α =
B1W4 − B2W2

W2W3 −W1W4
, β =

A1W4 − A2W2

W2W3 −W1W4
,

γ =
B1W3 − B2W1

W1W4 −W2W3
, δ =

A2W1 − A1W3

W2W3 −W1W4
.

(3.62)

The final solution to the full system of eqs. (3.24), (3.25) will be the sum of the general
solution of the homogeneous system and the particular solution of the non-homogeneous sys-
tem, as
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Ψ(R, Z) = Ψh + Ψp = c+

(
1

f1di
− diλ+

)
Ψ+ + c−

(
1

f1di
− diλ−

)
Ψ− + αR2 + β,

X (R, Z) = Xh +Xp = c+Ψ+ + c−Ψ− + γR2 + δ,
(3.63)

where the flux functions Ψ± are given by eq. (3.49), and the coefficients α, β, γ, δ are given by
eq. (3.62). We also stress again that c± are two arbitrary constants, and can be chosen as seen
fit.

3.2 Equilibria in terms of the Whittaker functions
We proceed by examining the case where m1 ̸= 0, n1 ̸= 0, m2 ̸= 0, n2 ̸= 0 and g1 =

−1/(d2
i f1). This specific selection for g1 decouples the system of the two differential equations

(2.45), (2.47) as

∆⋆Ψ +

(
1

d4
i f 2

1
− 1

d2
i

)
Ψ + n2ΨR2 + n1R2 − f0 + g0

d2
i f1

= 0,

∆⋆Φ +

(
1

d4
i f 2

1
− 1

d2
i

)
Φ − m2

d2
i f 2

1
ΦR2 − m1

d2
i f 2

1
R2 − f0 + g0

d2
i f1

= 0.

(3.64)

(3.65)

In order to solve it, we will follow the same procedure as in Section 3.1; we first seek a general
solution to the homogeneous system, and then we will seek a particular solution to the non-
homogeneous one in order to take the superposition of the two as the full solution.

3.2.1 Homogeneous system
The homogeneous counterpart of eqs. (3.64) and (3.65) is

∆⋆Ψ + γΨ + δΨR2 = 0,

∆⋆Φ + γΦ + δ′ΦR2 = 0,

(3.66)
(3.67)

where 5

γ =
1

d4
i f 2

1
− 1

d2
i

, δ = n2, and δ′ = − m2

d2
i f 2

1
. (3.68)

Both equations have the same form, so we proceed by solving eq. (3.66). Separating variables
as

Ψ(R, Z) = K(R)T(Z), (3.69)
our PDE reduces to

− 1
K(R)

d2K
dR2 +

1
RK(R)

dK
dR

− γ − δR2 =
1

T(Z)
d2T
dZ2 = −η2, (3.70)

where −η2 is the separation constant. We deduce two ODEs:

d2T
dZ2 + η2T(Z) = 0, (3.71)

5Those coefficients are not to be confused with the ones of Section 3.1.3.2.
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with solutions

T(Z) = A1 cos(ηZ) + A2 sin(ηZ), (3.72)

and

d2K
dR2 − 1

R
dK
dR

+ (γ − η2)K(R) + δR2K(R) = 0. (3.73)

In order to solve this ODE, we perform the transformation: ρ = i
√

δR2, where i2 = −1. Then,
since d

dR = 2i
√

δR ∂
∂ρ and ∂2

∂R2 = 2i
√

δ ∂
∂ρ + 4i

√
δR ∂2

∂ρ2 , eq. (3.73) becomes

d2K
dρ2 +

[
ν

ρ
− 1

4

]
K(ρ) = 0, (3.74)

where we set ν = i η2−γ

4
√

δ
. Eq. (3.74) is a special type of the Whittaker differential equation [81]:

y′′(x) +

[
ν

x
− 1

4
+

1
4 − µ2

x2

]
y(x) = 0, (3.75)

for the choice µ = 1/2. Hence, the solution for the radial part reads

K(R) = B1Mν, 1
2
(i
√

δR2) + B2Wν, 1
2
(i
√

δR2), (3.76)

where Mk,m(x) and Wk,m(x) are the so-called Whittaker functions, whose basic properties and
behaviour are examined in Appendix C. If we further restrict the separation constant to posi-
tive integers, i.e. η → k ∈ N, then the solution to eq. (3.66) is written as

Ψh(R, Z) =
∞∑

k=1

[
akMνk , 1

2
(i
√

δR2) cos(kZ) + bkMνk , 1
2
(i
√

δR2) sin(kZ) +

+ ckWνk , 1
2
(i
√

δR2) cos(kZ) + dkWνk , 1
2
(i
√

δR2) sin(kZ)
]

,

(3.77)

where ak, bk, ck and dk are constants. Working similarly for eq. (3.67), we obtain:

Φh(R, Z) =
∞∑

k=1

[
ãkMν̃k , 1

2
(i
√

δ′R2) cos(kZ) + b̃kMν̃k , 1
2
(i
√

δ′R2) sin(kZ) +

+ c̃kWν̃k , 1
2
(i
√

δ′R2) cos(kZ) + d̃kWν̃k , 1
2
(i
√

δ′R2) sin(kZ)
]

,

(3.78)

where ν̃k = i k2−γ

4
√

δ′
, and ãk, b̃k, c̃k, d̃k are some other constants.

3.2.2 Non-homogeneous system
We can write the non-homogeneous Grad-Shafranov equations (3.64) and (3.65) in the

form

∆⋆Ψ + γΨ + δΨR2 + εR2 + ζ = 0,

∆⋆Φ + γΦ + δ′ΦR2 + ε′R2 + ζ = 0,

(3.79)
(3.80)

where the coefficients γ, δ, and δ′ are given by eq. (3.68), and

ε = n1, ε′ = − m1

d2
i f 2

1
, and ζ = − f0 + g0

d2
i f1

. (3.81)
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The solution to eqs. (3.79) and (3.80) can be found by the similarity reduction procedure, which
is portrayed in [67]. For (3.79), we will select

Ψp(R, Z) = sin

(√
δ

2
R2 +

√
γZ

)
+ cos

(√
δ

2
R2 +

√
γZ

)
− ϵ

δ
(3.82)

or, equivalently

Ψp(R, Z) = sin

(√
n2

2
R2 +

√
1

d4
i f 2

1
− 1

d2
i

Z

)
+

cos

(√
n2

2
R2 +

√
1

d4
i f 2

1
− 1

d2
i

Z

)
− n1

n2
.

(3.83)

The only constraint that should hold, in order that (3.83) satisfies eq. (3.79), is that

ζ = γ
ϵ

δ
, or, equivalently f0 + g0

d2
i f1

= −
(

1
d4

i f 2
1
− 1

d2
i

)
n1

n2
. (3.84)

Working in a similar manner for the flux function Φ, we end up at

Φp(R, Z) = sin

(
1
2

√
− m2

d2
i f 2

1
R2 +

√
1

d4
i f 2

1
− 1

d2
i

Z

)
+

cos

(
1
2

√
− m2

d2
i f 2

1
R2 +

√
1

d4
i f 2

1
− 1

d2
i

Z

)
− m1

m2
,

(3.85)

under the constraint

f0 + g0

d2
i f1

= −
(

1
d4

i f 2
1
− 1

d2
i

)
m1

m2
. (3.86)

Finally, the full solution will read

Ψ = Ψh + Ψp (3.87)
Φ = Φh + Φp. (3.88)

Before we close this section, we stress that if we select m1 = n1 = 0 in eqs. (3.64), (3.65),
then albeit both the homogeneous and the non-homogeneous systems can be solved in the
samemanner as before, the restrictions for the particular solutions (3.84), (3.86) reduce to the
constraint: f0 + g0 = 0, since now m1 = n1 = 0. Thismeans that the vacuum toroidalmagnetic
field is non existent, and that these equilibria correspond to Spheromak-like configurations.

3.3 Solovév equilibria
If one assumes m1 ̸= 0, n1 ̸= 0, m2 = n2 = 0, and f1 = −g1 = 1/di for the general ansatz

given by (2.49)-(2.52), then the GS-Bernoulli system (2.45), (2.47), (2.48) reduces to a form
that is well known in the theoretical study of magnetic confinement. In particular, Solovév
in 1968 [68] proposed a polynomial solution (which is now named after him) for the static
MHD Grad-Shafranov equation in the case where the two MHD free functions are constants.
The GS equation then becomes linear and can be easily solved. In this section we first present
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the Solovév solution to the MHD GS equation for the sake of better understanding. We then
proceed to show that, for the above specific selection of the free parameters, the GS-Bernoulli
system reduces to two equations of the Solovév type.

3.3.1 Static MHD Solovév solution
The equilibrium of an axisymmetric, static MHD plasma is described by the GS equation

[20], which in dimensionless form reads

∆⋆Ψ + FF′ + R2P′ = 0, (3.89)
where Ψ is the flux function describing the poloidal magnetic field 6, F = F(Ψ) is the poloidal
current flux function, ∆⋆ is the Shafranov operator and P = P(Ψ) is the plasma pressure.
Both F and P are not prescribed by the MHDmodel, and thus serve as free functions. With that
being said, the choice that wemake for themwill greatly affect the solution for the GS equation
(3.89). By far the simplest selection is to assume that both of them are constants. This ansatz
is written as

P′(Ψ) = −|P′| = const. and FF′ =
1
2
(F2)′ = ϵ

|P′|
(1 + δ2)

, (3.90)

where ϵ and δ are constant geometrical parameters. The first parameter is related to the vac-
uum toroidal magnetic field, while the latter is connectedwith the elongation of the formation
[82]. The first relation of the above can be integrated to

P = Pa − |P′|Ψ, (3.91)
where Ψ ≥ 0 and we select Ψa = 0 and Pb = 0. The subscripts a and b indicate values on
the magnetic axis and the plasma boundary, respectively. We further assume that the poloidal
flux takes its maximum value Ψmax on the boundary. The so-called Solovév solution to (3.89)
is written down as

Ψ(ξ, ζ) =

[
ζ2(ξ2 − ϵ) +

δ2

4
(ξ2 − 1)2

]
ξ4

a |P′|
2(1 + δ2)

, (3.92)

where ξ = R/Ra and ζ = Z/Ra are the normalised coordinates with respect to the radius of
the magnetic axis Ra, and thus ξa = 1. 7

It is intriguing to find the stationary points of the Solovév flux function, by demanding that
Bp = 0, or equivalently ∇Ψ/R = 0. This leads to two equations, viz.

1
ξ

∂Ψ
∂ζ

≈ 1
ξ

ζ(ξ2 − ϵ) = 0, (3.93)

and

1
ξ

∂Ψ
∂ξ

≈ ∂Ψ
∂ξ2 ≈ ζ2 +

δ2

2
(ξ2 − 1) = 0. (3.94)

Our aim is to solve eqs. (3.93) and (3.94) simultaneously. The first solution is the magnetic
axis’s coordinates, namely ζ = 0, and ξ = 1, which as a matter of fact, are independent of ϵ.
On the magnetic axis, we find that Ψ = Ψa = 0 and we further choose P = Pa. For the second
solution, we have ξ =

√
ϵ, and ζ = ± δ√

2

√
1 − ϵ. These two points are of major importance, as

they are in essence the two X-points that this solution spontaneously possesses. Because the ζ
coordinate appears squared in the Solovév solution (3.92), the two X-points will be symmetric

6Which we have already studied in the context of Hall MHD.
7At this point one may justifiably wonder how can this non-separable, polynomial solution to the Grad-

Shafranov equation be related to the ones we found at the previous sections, e.g. the Bessel functions. The answer
is that there is a relation; the interested reader is refered to [83] for a relevant discussion.
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with respect to the ζ = 0 plane, i.e. they will be up-down symmetric. They are located on the
last closed flux surface (called separatrix), which is the curve that separatesmagnetic surfaces
with different topological properties (i.e. closed and open ones). Outside the separatrix, the
flux surfaces are open. This is illustrated in Fig. 3.1.

separatrix

Figure 3.1: Solovév equilibrium configuration.

One may substitute the coordinates of one of the two X-points in the solution (3.92), to
find the magnetic flux on the separatrix

Ψs =
ξ4

a |P′|
2(1 + δ2)

δ2

4
(1 − ϵ)2 (3.95)

If we now equate Ψ with its value on the separatrix, we can determine the separatrix curve.
More specifically, Ψ = Ψs leads to

ζ2(ξ2 − ϵ) +
δ2

4
(ξ2 − 1)2 =

δ2

4
(1 − ϵ)2. (3.96)

If we set

ξ2 − ϵ ≡ g, (3.97)
then eq. (3.96) translates to

g
[

ζ2 +
δ2

4
g − δ2

2
(1 − ϵ)

]
= 0. (3.98)

This equation has two solutions. The first one reads g = 0 ∀ζ ⇒ ξ2 = ϵ. This comprises
the ”inside part” of the separatrix (see Fig. 3.1). The other solution is retrieved by setting the
quantity within the square brackets equal to zero in equation (3.98). In other words,

ζ2 +
δ2

4
g =

δ2

2
(1 − ϵ) ⇒ ζ2 +

δ2

4
ξ2 =

δ2

4
(2 − ϵ). (3.99)
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The latter relation in (3.99) is an ellipse equation in the ξζ plane and is basically the ”outer
part” of the separatrix (Fig. 3.1).

Before we close this subsectionwe note that for the Solovév solution, themagnetic surfaces
in the vicinity of the magnetic axis and the outer part of the separatrix have elliptical cross-
sections. Moreover, if ϵ = 0, then the inner part of the separatrix is located on the axis of
symmetry and in this case the configuration becomes compact [82]. This is very important for
the current study, which will be evident in the next subsection.

3.3.2 Hall MHD Solovév solution
Let us now return to the GS-Bernoulli system of equations (2.45), (2.47), (2.48) of our

originally adopted Hall MHD model. For m2 = n2 = 0 and f1 = −g1 = 1/di, the two GS
equations reduce to

∆⋆Ψ + n1ξ2 − f0 + g0

di
= 0, (3.100)

∆⋆Φ − m1ξ2 − f0 + g0

di
= 0, (3.101)

which are normalised with respect to the magnetic axis coordinates, without loss of gener-
ality 8. Those equations are of the static Solovév form (3.89). Because we have two fields
of interest, viz. B and v, it is generally desired to have one separatrix, or in other words we
would like the magnetic separatrix to coincide with the ion velocity one. Therefore, the pa-
rameters δ and ϵ should be common for both configurations. We readily observe that the FF′

term in (3.89) corresponds to the constant term −( f0 + g0)/di, which is common in (3.100)
and (3.101). Consequently, the ansatz (3.90) implies that the terms n1 and−m1 (which corre-
spond to |P′|), should be identical: m1 = −n1 > 0 and then the two PDEs (3.100) and (3.101)
become identical too. With that being said, it is now evident that such equilibria reduce to
MHD-like equilibria with flow, and it holds that Ψ ≡ Φ. Nevertheless, the definition of the
toroidal velocity component (2.41) implies that vϕ becomes indefinite for di = 0. Considering
a compact toroid we may set vϕ = 0 because the toroidal velocity should vanish on the sym-
metry axis, i.e. the torus axis. Hence, the flow of the ion fluid ought to be purely poloidal.
However, based on a previous study [84], an MHD equilibrium state with purely poloidal
flows is possible only if the magnetic field is purely poloidal too. Thus, it should hold that
f0 + g0 = 0 and as a consequence ϵ = 0. This in turn witnesses that such equilibria concern
field-reversed configurations (see Section 1.3.2.3)with sheared poloidal flows. The common
solution to eqs. (3.100), (3.101) will read

Ψ(ξ, ζ) ≡ Φ(ξ, ζ) =

[
ζ2ξ2 +

δ2

4
(ξ2 − 1)2

]
ξ4

am1

2(1 + δ2)
, (3.102)

where m1 > 0 and ξa = 1 is the radius of the magnetic axis (which is identical to the velocity
axis). The coordinates of the separatrix points will be (0,±δ/

√
2), and (

√
2, 0). We finally

note that the value of Ψ on the separatrix (see eq. (3.95)) will be

Ψs =
ξ4

am1δ2

8(1 + δ2)
. (3.103)

The rest of the analysis remains the same as in the previous subsection, with ϵ = 0. We
further mention that in general, the pressure does not vanish on the separatrix due to the
presence of flows.

8For historical reasons, we will prefer this normalisation scheme for the needs only of the Solovév equilibrium.
The rest of the physical quantities are normalised in the standard Alfvén manner, per (1.54). The only difference
is that now L ≡ Ra
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3.4 Generic equilibria
The last type of equilibria that will be studied concerns no restrictions whatsoever for the

ansatz parameters; we will just assume that each single parameter is other than zero at the
ansatz (2.49)-(2.52). With that being said, the twoGrad-Shafranov equations (2.45) and (2.47)
read

∆⋆Ψ + g1( f0 + g0) + g2
1Ψ + g1 f1Φ + n1R2 + n2ΨR2 +

Φ − Ψ
d2

i
= 0, (3.104)

d2
i f 2

1 ∆⋆Φ − f1( f0 + g0)− f 2
1 Φ − f1g1Ψ − m1R2 − m2ΦR2 +

Φ − Ψ
d2

i
= 0. (3.105)

In this section we shall content ourselves with solving the homogeneous counterpart of eqs.
(3.104), (3.105), since it suffices in order to delineate the basic properties one might expect
from such an equilibrium. In this regard, let

Φ = Φ(ξ1), ξ1 = a1R2 ± b1Z, (3.106)
Ψ = Ψ(ξ2), ξ2 = a2R2 ± b2Z, (3.107)

where a1, b1, a2, b2 are constants. After a brief calculation of the Shafranov operator for this
case and a grouping of terms, our differential equations transform to

4a2
2R2Ψ′′ + b2

2Ψ′′ +

(
g2

1 −
1
d2

i

)
Ψ +

(
f1g1 +

1
di

)
Φ + n2ΨR2 = 0, (3.108)

and similarly

d2
i f 2

1 (4a2
1R2Φ′′ + b2

1Φ′′) +

(
1
d2

i
− f 2

1

)
Φ −

(
f1g1 +

1
d2

i

)
Ψ − m2R2Φ = 0, (3.109)

where the prime denotes differentiation with respect to either ξ1 or ξ2, depending on the flux
function. Considering the LHS of eqs (3.108) and (3.109) as polynomials with respect to R
we demand that the respective coefficients of R2 and the R0 terms are equal to zero. In other
words,

4a2
1d2

i f 2
1 Φ′′ − m2Φ = 0, (3.110)

d2
i f 2

1 b2
1Φ′′ +

(
1
d2

i
− f 2

1

)
Φ −

(
f1g1 +

1
d2

i

)
Ψ = 0, (3.111)

4a2
2Ψ′′ + n2Ψ = 0, (3.112)

b2
2Ψ′′ +

(
g2

1 −
1
d2

i

)
Ψ +

(
f1g1 +

1
d2

i

)
Φ = 0. (3.113)

This system can be easily decoupled. Truly, upon setting 9

α = d2
i f 2

1 , β =
1
d2

i
− f 2

1 , γ = f1g1 +
1
d2

i
, δ = g2

1 −
1
d2

i
, (3.114)

the system of equations (3.110)-(3.113) reduces to the following decoupled system
9Again, these coefficients should not be confused with the ones of the previous sections.
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α

γ
b2

1b2
2Φ′′′′ +

(
β

γ
b2

2 +
αδ

γ
b2

1

)
Φ′′ +

(
βδ

γ
+ γ

)
Φ = 0, (3.115)

4a2
1αΦ′′ − m2Φ = 0, (3.116)

α

γ
b2

1b2
2Ψ′′′′ +

(
αδ

γ
b2

1 +
β

γ
b2

2

)
Ψ′′ +

(
βδ

γ
+ γ

)
Ψ = 0, (3.117)

4a2
2Ψ′′ + n2Ψ = 0. (3.118)

We can observe that Φ = cos ξ1 is a solution, provided that

α

γ
b2

1b2
2 −

(
β

γ
b2

2 +
αδ

γ
b2

1

)
+

(
βδ

γ
+ γ

)
= 0,

a1 = ±
√
−m2

4α
.

(3.119)

(3.120)

Similarly, Ψ = cos ξ2 is a solution, provided that

α

γ
b2

1b2
2 −

(
αδ

γ
b2

1 +
β

γ
b2

2

)
+

(
βδ

γ
+ γ

)
= 0,

a2 = ±
√

n2

4
.

(3.121)

(3.122)

Hence, there exist the following analytic solutions

Φ±(R, Z) = cos(a1R2 ± b1Z), (3.123)
Ψ±(R, Z) = cos(a2R2 ± b2Z), (3.124)

under the constraints (3.119)-(3.122).
We now proceed to demonstrate the behaviour that the above solutions (3.123)-(3.124)

exhibit. Unfortunately, Φ± and Ψ± per se present no closed contours, which are necessary for
the successful magnetic confinement of plasma (see Section 1.3.2.1). This is depicted in the
plots of Figure 3.2.

Figure 3.2: Graphical representation of two solutions, Φ− and Φ+ respectively, for a1 = b1 = 1.
Contour shading is in arbitrary units.

However if we select as a solution their linear combination
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Φ(R, Z) = c+Φ+ + c−Φ−, (3.125)
Ψ(R, Z) = d+Ψ+ + d−Ψ−, (3.126)

where c±, d± are arbitrary constants, then it is possible to obtain configurations with closed
magnetic/ion velocity surfaces, which is illustrated in Figure 3.3.

Figure 3.3: Graphical representation of a superposition of solutions like (3.125), for a1 = b1 =
1 and c+ = 1, c− = 2. Contour shading is in arbitrary units.

Truly, we notice that closed ion velocity surfaces have emerged; nevertheless Figure 3.3 indi-
cates a multi-toroidal configuration. Such configurations have been employed for the study of
solar eruptive prominences, coronal loops, etc. [85], [86]. We also observe several X-points
in the configuration; more specifically, one may see that their number varies as we alter the
values of c±.
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4
Applications of the solutions to axisymmetric

fusion devices

It is now clear to all that our original beliefs, that the doors into the desired
region of ultra-high temperatures would open smoothly at the first powerful

pressure exerted by the creative energy of physicists, have proved as
unfounded as the sinner’s hope of entering Paradise without passing through

Purgatory. And yet there can be scarcely any doubt that the problem of
controlled fusion will eventually be solved. Only we do not know how long we

shall have to remain in Purgatory.

Lev Artsimovich1

The time has come to apply the solutions that were theoretically established in Chapter 3
to more realistic scenarios, namely Tokamak and Field-Reversed Configurations in the scope
of Controlled Thermonuclear Fusion. For that purpose, we will endeavour to employ proper
shaping methods for determining the boundary in each case, and then we will attempt to
specify the unknown parameters so that the resulting configuration exhibits closed, nested
magnetic and ion velocity surfaces. For the Solovév equilibrium, we will follow a slightly dif-
ferent methodological approach, which was examined in Section 3.3. We will also examine
the equilibrium quantities for each case, that is the profiles of the magnetic field, the ion velocity
field, the current density etc. By far the most notable of these will be the total plasma pres-
sure inside the fusion device, since its behaviour directly influences the achievement or not of
thermonuclear temperatures (which was discussed in the end of Section 2.2).

4.1 Tokamak-relevant equilibria

4.1.1 Geometry of the D-shaped Tokamak boundary
Webegin by discussing the geometry of the boundary thatwill be used for the construction

of axisymmetric Tokamak-relevant equilibria. Generally speaking, we are interested in a closed
boundary that reflects the toroidal geometry of the Tokamak. More specifically, we will use
a boundary of D-shape, because in this case the formation is more stable. The reason lies on
the reduced curvature of the magnetic field at the inner side near the axis of the torus. We
thus avoid the Rayleigh-Taylor instability, which is particularly dangerous for fusion plasmas.
Furthermore, the elongation of the cross-section of the Tokamak from a circle to a D-shape
increases the value of the beta parameter to the desired levels, per [18]. In order to describe

1Lev Artsimovich was the father of the Tokamak. The above (prophetic) words were spoken at the first inter-
national conference on plasma physics and controlled nuclear fusion held in Salzburg, in September 1961.
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the geometry of the boundary in the poloidal cross-section, we choose three reference points:
the inner equatorial point, the outer equatorial point and the high point, as defined in Fig. 4.1.

Figure 4.1: The geometry and the three reference points of the D-shaped boundary [87].

The boundary can be defined via the parametric equations introduced in [87], [88], viz.

R(ϕ) = 1 + ε cos(ϕ + α sin ϕ), (4.1)
Z(ϕ) = εκ sin ϕ, (4.2)

with ϕ ∈ [0, 2π] being the toroidal angle. Three important geometric parameters have also
appeared 2 in the above parametric expressions, namely

ε =
Rmax − Rmin

2R0
=

a
R0

(Inverse aspect ratio), (4.3)

κ =
Zmax − Zmin

Rmax − Rmin
=

Zmax

a
(Elongation), (4.4)

δ =
R0 − R1

R0 − Rmin
=

R0 − R1

a
(Triangularity), (4.5)

α = arcsin δ, (4.6)

where a and R0 are the minor and major radii of the torus respectively, Rmin and Rmax are
the radii of the inner and outer equatorial points, Zmin and Zmax are the height of the highest
and lowest points respectively, and R1 is the radius corresponding to the highest point [89].
Since the equations we use are dimensionless, it is reasonable to use dimensionless coordinates
as follows

2Not to be confused with the coefficients of Chapter 3, which bear the same symbols. Also, α should not be
confused with a, which is the torus minor radius (see relation (1.19), which is the inverse of (4.3))
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1 + ε =
Rmax

R0
(Outer equatorial point radius), (4.7)

1 − ε =
Rmin

R0
(Inner equatorial point radius), (4.8)

1 − δε =
R1

R0
(High point radius), (4.9)

κε =
Zmax

R0
(Height of the high point). (4.10)

These coordinates can be easily understood from Figure 4.1, where both R and Z have been
normalised, in agreement with the normalisation scheme of Section 1.4.3.2. Relations (4.7)-
(4.10) are easily deduced from (4.3)-(4.6), by performing the operations.

4.1.2 Boundary conditions
For the purposes of this thesis, we will use the simplest boundary condition that requires

the plasma to be surrounded by a stationary, perfectly conducting wall ∂S , where as we men-
tioned in a previous chapter, S is our computational domain - i.e. a torus cross-section. In this
case, the electromagnetic boundary conditions (see [26]) require the tangential component of
the electric field and the vertical component of the magnetic field to be zero in ∂S ,

n̂ × E|∂S = 0, (4.11)
n̂ · B|∂S = 0, (4.12)

where n̂ is the normal vector to the boundary which points outwards. Since the perfectly
conductive wall ∂S is nothing else but a magnetic surface, relation (4.12) can be written in the
light of (2.25) as

n̂ · B|∂S =
1
R
∇Ψ · (n̂ × eϕ)|∂S = 0 ⇒ Ψ|∂S = const., (4.13)

whichmeans that∇Ψ is normal to the boundary ∂S . Without loss of generality we can choose
the constant equal to zero, so we arrive at the following boundary condition

Ψ|∂S = 0. (4.14)
We demand that the flux function for the ion velocity field vanishes on the boundary as well

Φ|∂S = 0. (4.15)
because otherwise there would be a flow of ions across the boundary.

In order to specify the boundary even better, however, in addition to (4.14) and (4.15), we
will impose somemore boundary conditions presented in [87]. In particular, the complete set
of boundary conditions we will use is the following

Ψ(1 + ε, 0) = 0 (Inner equatorial point),
Ψ(1 − ε, 0) = 0 (Outer equatorial point),
Ψ(1 − δε, κε) = 0 (High point),
ΨR(1 − δε, κε) = 0 (High point maximum),
ΨZZ(1 + ε, 0) = −N1ΨR(1 + ε, 0) (Outer equatorial point curvature),
ΨZZ(1 − ε, 0) = −N2ΨR(1 − ε, 0) (Inner equatorial point curvature),
ΨRR(1 − δε, κε) = −N3ΨZ(1 − δε, κε) (High point curvature),

(4.16)
(4.17)
(4.18)
(4.19)
(4.20)
(4.21)
(4.22)
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and similarly for the other flux function Φ. In eqs. (4.16)-(4.22), indices denote differentiation
and we additionally defined the curvatures at the 3 reference points as

N1 =

[
d2R
dZ2

]
ϕ=0

= − (1 + α)2

εκ2 , (4.23)

N2 =

[
d2R
dZ2

]
ϕ=π

=
(1 − α)2

εκ2 , (4.24)

N3 =

[
d2Z
dR2

]
ϕ=π/2

= − κ

ε cos2(α)
. (4.25)

The proof of relations (4.23)-(4.25) is presented in [90]. This completes the basis of the shap-
ingmethod thatwill be used for the construction of axisymmetric Tokamak-relevant equilibria,
in the subsections to follow.

4.1.3 Double Beltrami equilibrium

4.1.3.1 Equilibrium construction

The first application that will be studied is based on the solutions that were presented
in Section 3.1, and concerns an axisymmetric double Beltrami system. Before we begin the
treatment of this equilibrium, it is of utmost importance that we acknowledge the significance
of the two Lagrange multipliers µ1 ≡ g1 and µ2 ≡ f1; the choice that we make for them will
affect the Beltrami parameters λ± (see eqs. (3.27) and (3.13)), and subsequently the form of
the two flux functions Ψ± as indicated by the PDE (3.35). Since the choice for the Lagrange
multipliers yields different formations depending on the geometry, the need for a reference
value arises. Based on previous work of the author [91] that concerned ordinary Beltrami
equilibria, it has been established that a Beltrami parameter λ ∼ 6 yields a desirable formation
with closed magnetic surfaces, for the geometrical configuration in question (Section 4.1.2).
With that being said, we select the reference parameter to be ℓ = 5.52, and then we ask which
values of f1, g1 satisfy the relations λ+ = ℓ, λ− = 1.2ℓ. In other words we simply select
λ± to be close to the reference value of ℓ. Another concern is the appropriate value for the
ion skin depth di. Given that in Tokamaks the ion skin depth is O(cm) [51], [92], we choose
the (dimensionless) ion skin depth to be di = 0.03. The rest of the ansatz parameters were
found by inspection (see Table 4.1), based on which values yield the most desirable results.
Among them, m0 and n0 were selected in such a manner that the pressure attains an almost
vanishing value on the boundary. Finally, as long as the physical parameters are concerned,
we chose the values that are listed in Table 4.1. For the scope of constructing the present
equilibrium state, we used ITER parameters that are presented in [93], [94], [95]. We must
also underline that the major radius of ITER, R0, was used as the reference length for the
Alfvén normalisation scheme (Section 1.4.3.2), i.e. L0 ≡ R0. With the values of Table 4.1 in
hand, we can easily calculate the reference Alfvén speed 3 4: vA = B0/

√
µ0min0, as well as the

Alfvén time: τA = R0/vA. All of these values will be useful for the calculations of the physical
quantities of the equilibrium later on. The coefficients Wi, i = {1, 2, 3, 4} (see Appendix A),
A1, A2, B1, B2 (see eq. (3.56)) can be calculated without difficulty via the values of Table 4.1.

3Since our model neglects the inertia of electrons, we are free to substitute the total mass m with the ion mass
mi in the definition of the Alfvén speed.

4One should not confuse the Ansatz parameter n0 with the average plasma density, which bears the same
symbol. The reader should be aware of the context in which n0 appears in order to interpret the symbol correctly.
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Table 4.1: Numerical values for the double Beltrami equilibrium parameters.

Parameter Value Units
Ion skin depth di 0.03

Ansatz parameters

f0 0.2
g0 0.2
f1 28.1937
g1 −27.2659
m0 0.0556
n0 0.0556
m1 −1.5
n1 −2.5

ITER Toroidal magnetic field B0 5.3 T
ITER Minor radius a 2 m
ITER Major radius R0 6.2 m
ITER Average plasma number density n0 1.01 × 1020 m−3

ITER Inverse aspect ratio ε 0.32
ITER Elongation κ 1.8
ITER Triangularity δ 0.45

Vacuum permeability µ0 4π × 10−7 H/m
Ion mass (for protonic plasma) mi 1.67 × 10−27 kg

We may now proceed to the analytical determination of the equilibrium. Per Section 3.1,
we select5 the solutions to the homogeneous equation to be

Ψ±(R, Z) = R
5∑

j=1

{
aj± J1

(
R
√

λ2
± − j2

)
cos(jZ) + bj±Y1

(
R
√

λ2
± − j2

)
cos(jZ)

}
+

+ c1±R2 cos(λ±Z) + c2± cos(λ±Z) + c3± cos(λ±
√

R2 + Z2),

(4.26)

where aj±, bj±, c1±, c2±, c3±, are coefficients that we wish to specify by means of the bound-
ary conditions. As one can notice, no sines are present in (4.26); the reason for this is that
we require the formation to be up-down symmetric, i.e. symmetric with respect to the mid-
plane Z = 0. At the solution (4.26), we further added the special, non-separable solution
cos(λ±

√
R2 + Z2), which was suggested by Cerfon and O’Neil [88]. The full solution for the

flux functions Ψ and X is given by equations (3.63), with c+ = c− = 1 and the coefficients
α, β, γ, δ given by eqs. (3.62). The next step is to specify the boundary, per Section 4.1.2 with
the aim of obtaining a formation with closed, nested magnetic surfaces. It should be stated
that the boundary will be imposed only on Ψ. In order to avoid the trivial solution Ψ = 0,
we will set some coefficients of (4.26) equal to the unity, namely a1+ = a1− = c3− = 1. The
solution in question contains 23 coefficients (not including the ones we set equal to 1), which
ought to be determined from the boundary conditions. Since the conditions (4.16)-(4.22) are
7 in total, a first estimate is that we will need 16 extra points for closure, at which we will addi-
tionally impose the boundary condition (4.14). Practically, however, we defined 18 points on
the boundary to get 16 linearly independent algebraic equations. The extra points are found
via the parametric equations (4.1), (4.2) and are depicted in Figure 4.2.

5Both λ2
± are always greater than j2, thus the solutions are ordinary (and not modified) Bessel functions. We

also supposed that the separation constant is a real number.
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Figure 4.2: The extra points on the boundary for the double Beltrami equilibrium. Due to the
up-down symmetry of the formation, only points for Z > 0 have been chosen.

The points are of course indicative, and lie at Z > 0, due to the previouslymentioned up-down
symmetry of the formation. Hence, the extra boundary conditions will read

Ψ(R = Rextrai, Z = Zextrai) = 0, (4.27)

where Rextrai, Z = Zextrai are the coordinates of the extra points. The problem that we want
solved is basically the system of algebraic equations (4.16)-(4.22), along with (4.27), with re-
spect to the unknown coefficients. At this point it is appropriate to comment that the system
in question is linear, since the Beltrami parameters λ± are constants. In the opposite case
where the λ± had spacial dependence, then the system of equations would become non-linear
and its solution would be significantly complicated. By means of linear solving routines, the
above-mentioned system can be successfully solved. A re-scaling of the flux functions was
also carried out 6, in order to obtain better results. Figure 4.3 illustrates the solution, i.e. some
magnetic surfaces, along with the respective ion velocity flow surfaces in a poloidal torus
cross-section. Of course, since we are addressing an axisymmetric equilibrium, this pattern is
going to be the same for every single poloidal cross-section of the confinement system.

The first remarkable finding is witnessed by Figure 4.3; the departure of themagnetic sur-
faces with the respect to the ion velocity ones. This is naturally expected, as the Hall MHD
model predicts the separation of the ion fluid from the magnetic surfaces. This separation
becomes more evident for greater values of the ion skin depth di. For di = 0, the separation
would be non-existent sincewewould end up at anMHD-like scenario. Despite this, theMHD
limit of di → 0 should be interpretedwith caution and reluctance, because setting di = 0 in the
Hall MHD Casimir invariants (2.28) does not yield the MHD Casimirs. This occurs because
the MHD limit consists a singular perturbation problem [28]. In addition, it should be empha-
sised that, due to the separation of the two fluids, the formation possesses two separate axes;
a magnetic one and a velocity one - though their coordinates differ only slightly. Another find-
ing that can be deduced from Fig. 4.3, is that the equilibrium exhibits a Shafranov shift [96].
This phenomenon, proposed by Shafranov at 1963, concerns the outward radial displacement
of the magnetic axis with respect to the geometrical center of the boundary, and is caused by

6Remember that the two flux functions are defined by the indeterminacy of a multiplicative constant, hence we
can choose these constants as seen fit for a proper rescaling.
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Figure 4.3: The contours of the magnetic and the ion velocity surfaces for the double Beltrami
equilibrium. The chosen extra points on the boundary are illustrated as well.

the combined effects of toroidicity, the pressure gradient, and the so-called hoop force in the
toroidal direction [18].

4.1.3.2 Equilibrium quantities

Our next goal is to demonstrate the behaviour of the physical quantities of interest for the
current equilibrium state. The quantities are the following: the two flux functions Ψ and X ,
the magnitude of the magnetic field B, the magnitude of the ion velocity field v, the current
density J, and the plasma pressure P. Moreover, since the Hall MHD model predicts the
separation of the two fluids, it is appropriate to carry out a calculation of the electric field as
well, from Ohm’s law (1.62). Albeit the plasma is quasineutral, the plasma approximation
(ni ≃ ne while at the same time ∇ · E ̸= 0) cannot replace Gauss’s law (1.23) in our case.

We begin by examining the profiles of the two flux functions. Those are illustrated in
Figures 4.4 and 4.5.
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Figure 4.4: The (dimensionless) flux functions’ profiles for the double Beltrami equilibrium
on the plane Z = 0.
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We observe that both Ψ and X present a minimum on the magnetic axis, which is physically
acceptable. The Shafranov shift is noticeable here aswell, since theminimum is displacedwith
respect to R = 1. The slight deviation of the two flux functions again witnesses their different
nature, and subsequently the separation of the ion fluid from the magnetic surfaces. A similar
behaviour is seen in the R = 1 plane (Fig. 4.5), where we corroborate the up-down symmetry
of the formation.
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Figure 4.5: The (dimensionless) flux functions’ profiles for the double Beltrami equilibrium
on the plane R = 1.

The next two quantities that will be studied are the magnetic and the velocity fields. Fig.
4.6 depicts two profiles of the former, while Fig. 4.7 two profiles of the latter. For the calcula-
tion of the magnetic field we utilised relations (2.40) and (2.25), while for the calculation of
the velocity field we employed relations (2.41), (2.42), and (2.26). Both B and v have phys-
ically acceptable profiles, and their respective values are within acceptable levels [93], [97];
the magnetic field values are O(T), while the velocity values are O(106 m/s).
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Figure 4.6: Magnetic field profiles for the double Beltrami equilibrium. Left: The Z-
component of the magnetic field on the plane Z = 0. Right: The toroidal component of the
magnetic field on the plane R = 1.
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Figure 4.7: Ion velocity field profiles for the double Beltrami equilibrium. Left: The R-
component of the velocity field on the plane R = 1. Right: The toroidal component of the
velocity field on the plane R = 1.

Subsequent to this, it is interesting to plot the poloidal AlfvénicMach number, i.e. the poloidal
velocity divided by the reference Alfvén speed

MA
p =

vp vA

vA
≡ vp =

√
v2

R + v2
Z, (4.28)

wherewemultiplied the dimensionless poloidal velocity, vp, with the Alfvén speed in order to
obtain the respective physical quantity. Due to the selected Alfvén normalisation scheme, the
poloidal Alfvénic Mach number coincides with the dimensionless poloidal velocity. Its profile
is depicted in Figure 4.8. As the plot of Fig. 4.8 suggests, the values of Mp

A are always lower
than unity, therefore the poloidal ion velocity is sub-Alfvénic, in accordance with experimental
evidence [97]. Thismeans that for such ion flows, the development of shockwaves and related
disturbances is unlikely [5]. On top of that, the behaviour of Mp

A on the velocity axis indicates
a discontinuity of the first derivative of the poloidal ion velocity with respect to R thereon.
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Figure 4.8: The profile of the poloidal Alfvénic Mach number on the plane Z = 0 for the
double Beltrami equilibrium.

R-profiles of the current density components JZ and Jϕ are displayed in Fig. 4.9. As we can
see, the profiles are physically acceptable and the current density values are in the MA/m2

regime, which is typical for most Tokamaks, including ITER [94], [95]. Note that for deducing
the current density we used Ampère’s law, (1.37) in dimensionless form.
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Figure 4.9: Current density profiles for the double Beltrami equilibrium. Left: The R-
component of the current density on the plane R = 1. Right: The toroidal component of
the current density on the plane Z = 0.

We proceed by presenting some profiles for the poloidal components of the electric field
(Fig. 4.10), calculated in a straightforward manner from Ohm’s law (1.62). It is noted here
that in the MHD limit the electric field is associated with the component of the velocity non-
parallel to the magnetic field. For the current equilibrium the separation of the two fluids
generates a purely poloidal electric field, as the toroidal component was found to be equal to
zero. This finding is expected, since we have no toroidal loop voltage and the plasma is ideal.
The resulting components, namely ER and EZ, present a physically expected behaviour and
values of the order of MV/m.
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Figure 4.10: Poloidal electric field profiles for the double Beltrami equilibrium. Left: The Z-
component of the electric field on the plane R = 1. Right: The R-component of the electric
field on the plane R = 1.

The final equilibrium quantity that is of particular interest for the scope of magnetic con-
finement is the plasma pressure. Based on the particular ansatz for the double Beltrami equi-
librium, we can perform a calculation of P via eq. (2.48). The result is shown in Figure 4.11.
The profile is peaked on the magnetic axis (although there is a slight deviation due to the
flow), and the pressure values are typical for Tokamaks [94], [98]. Also, we should note that
although P attains low values on the boundary it is not exactly zero, which is desirable for
more efficient plasma confinement. This is so because, owing to the flow the isobaric surfaces
depart from the magnetic surfaces, thus the pressure has the tendency to organise into sepa-
rate poloidal-cross-section contours, per Fig. 4.12. Before closing this section, it is noteworthy
that if the profile of the squared velocity v2 = v2

R + v2
ϕ + v2

Z is calculated or chosen in some
manner to be hollow (which means that it has a minimum) with respect to the magnetic axis,
then the pressure profile would still be peaked on axis. Such a velocity profile is justifiable for
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the study of the L-H transition (see Section 1.5), where sheared poloidal flows develop in the
pedestal region near the boundary.
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Figure 4.11: The plasma pressure profile on the Z = 0 plane for the double Beltrami equilib-
rium.
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Figure 4.12: The pressure contours in a torus cross section, along with the magnetic and ion
surfaces for the double Beltrami equilibrium.
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4.1.4 Whittaker equilibrium

4.1.4.1 Equilibrium construction

In this subsection we shall concern ourselves with the construction of an axisymmetric
equilibrium state of the Whittaker type, on the basis of the theoretical background that was
presented in Section 3.2. From one point of view, this equilibrium state is a more generic
counterpart of the one formulated in Section 4.1.3, due to themore general form of the adopted
ansatz (2.49)-(2.52). We commence by presenting the fundamental parameters that will be
used for the Whittaker equilibrium, per Table 4.2.

Table 4.2: Numerical values for the Whittaker equilibrium parameters.

Parameter Value Units
Ion skin depth di 0.02

Ansatz parameters

f0 0.5
g0 0.5
f1 50.0156
g1 −(d2

i f1)
−1

m0 0
n0 0
m1 −1282.25
n1 1282.25
m2 −40
n2 40

ITER Toroidal magnetic field B0 5.3 T
ITER Minor radius a 2 m
ITER Major radius R0 6.2 m
ITER Inverse aspect ratio ε 0.32
ITER Elongation κ 1.8
ITER Triangularity δ 0.45

Vacuum permittivity ϵ0 8.854 × 10−12 F/m
Vacuum permeability µ0 4π × 10−7 H/m
Speed of light in vacuum c 3 × 108 m/s
Elementary charge e 1.6 × 10−19 C
Ion mass (for protonic plasma) mi 1.67 × 10−27 kg
Plasma number density n0 3.38 × 1018 m−3

For the dimensionless ion skin depth, we select again a value of O(10−2), but slightly lower
than that of the double Beltrami case. Apart from di, the crucial part is once again the choice
that we shall make for the ansatz parameters. On the basis of analytical calculations carried
out in [99], and having been established that for n2 = 40 and m2 = −40 we end up at a
desirable formation, we adopt those values (Table 4.2). In order to refine the calculationmore,
an empirical rulewas discovered, namely that f1 should be chosen in such away, that f1 di ∼ 1.
The ansatz parameters m1, n1 were found from the constraints (3.84), (3.86) that concern the
non-homogeneous solutions to eqs. (3.79), (3.80), while the rest of the ansatz parameterswere
found by inspection. In regard to the geometrical parameters of the equilibrium, we utilised
the same ones from the double Beltrami case, that concern ITER and which are listed in Table
4.1 as well. Another distinct feature from the aforementioned equilibrium is that we did not
adopt the ITER average plasma density, (see Table 4.1), but instead we calculated n0 from the
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very definition of the ion skin depth, (1.59), for given di = 0.02. As for the normalisation of
the physical quantities, we once more select the reference length scale to be L0 ≡ R0.

After calculating the required coefficients γ, δ, δ′, ε, ε′, ζ straightforwardly from relations
(3.68) and (3.81), we select as (up-down symmetric) solutions to the homogeneous equations
(3.66), (3.67) the following

Ψh(R, Z) =
11∑

k=1

[
akMνk , 1

2
(i
√

δR2) cos(kZ) + bkWνk , 1
2
(i
√

δR2) cos(kZ)
]

, (4.29)

and

Φh(R, Z) =
11∑

k=1

[
ãkMν̃k , 1

2
(i
√

δ′R2) cos(kZ) + b̃kWν̃k , 1
2
(i
√

δ′R2) cos(kZ)
]

. (4.30)

We also set a1 = ã1 = 1 in order to avoid the trivial solution, and rescale the solutions properly
in order to obtain desirable results. For a particular solution to the non-homogeneous equa-
tions (3.79), (3.80), we shall select an up-down symmetric solution as well in order to preserve
the said symmetry of the formation. Since the previously proposed solutions (3.83), (3.85)
contain sines, which are up-down asymmetric, we shall exploit the freedom that the similarity
reduction method [67] bestows us to select another variant of the particular solutions, which
is up-down symmetric. Those ones read

Ψp(R, Z) = cos

(√
δ

2
R2 +

√
γZ

)
+ cos

(√
δ

2
R2 −√

γZ

)
− ε

δ
, (4.31)

and

Φp(R, Z) = cos

(√
δ′

2
R2 +

√
γZ

)
+ cos

(√
δ′

2
R2 −√

γZ

)
− ε′

δ′
. (4.32)

Truly, one may corroborate that the above particular solutions (4.31), (4.32) satisfy the non-
homogeneous equations (3.79) and (3.80). The full solutionwill of course be the superposition
of (4.29) with (4.31) and (4.30) with (4.32). We should additionally remark that, since the two
Whittaker functions are complex in general and given that our PDEs are linear, it is mandatory
to retain either the real or the imaginary part of Ψ and Φ, as both of them are solutions. For the
current analysis we will select the imaginary part, for both flux functions and their derivatives
with respect to R and Z, up to second order.

As concerns the boundary of the formation, we will employ the same shaping method
(see Sections 4.1.1, 4.1.2) as with the previous equilibrium. The only difference is that we
will impose the boundary on Ψ and Φ separately in order to obtain the two kind of surfaces
(magnetic and velocity ones). With that being said, although we have 21 coefficients (for each
flux function) that we want specified, we need to define 14 extra points on the boundary (Fig.
4.13) via the parametric equations (4.1), (4.2), as well as two extra boundary conditions in
addition to (4.16)-(4.22) - namely that ΨZ(1 ± ϵ, 0) = ΦZ(1 ± ϵ, 0) = 0 per [99] - in order to
obtain closure.

The determination of the flux surfaces reduces to solving the system of the said algebraic
equations (boundary conditions (4.16)-(4.22), alongwith ΨZ(1± ϵ, 0) = ΦZ(1± ϵ, 0) = 0 and
(4.27)), with respect to the unknown coefficients. This procedure will be carried out twice,
since we actually have one system for each flux function. After a successful calculation of
the coefficients in question, we proceed to present the contours of both flux functions (Figure
4.14).
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Figure 4.13: The extra points on the boundary for the Whittaker equilibrium.
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Figure 4.14: The contours of the magnetic and the ion velocity surfaces for the Whittaker
equilibrium. The chosen extra points on the boundary are illustrated as well.

As with the double Beltrami equilibrium, the separation of the two flux surfaces is evident.
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The velocity surfaces are organised around an axis other than themagnetic one, although once
again their deviation is only slight. A Shafranov shift of both surfaces can also be observed, for
the same reasons as in the previously-built equilibrium. The difference with the latter is that
the two boundaries for Ψ and Φ coincide - which is expected as we imposed the boundary on
both of them.

4.1.4.2 Equilibrium quantities

In this subsection we present some equilibrium quantities of interest for the current equi-
librium state, by following the footsteps of Section 4.1.3. The first profiles thatwill be examined
are of course those of the two flux functions Ψ and Φ. Figure 4.15 depicts the behaviour of their
normalised counterparts with respect to their axial values. This normalisation was carried out
because the two quantities would otherwise differ by many orders of magnitude, and thus
they could not be displayed in the same plot.
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Figure 4.15: The (dimensionless) flux functions’ profiles for the Whittaker equilibrium on the
plane Z = 0.

We notice that both flux functions exhibit a maximum on the respective axes, as expected. The
respective profiles on the R = 1 plane are not displayed here, since they resemble the ones of
Fig. 4.5 and they provide no additional information whatsoever.

As far as the magnetic field is concerned, we present at Fig. 4.16 two profiles for its Z and
ϕ (toroidal) component, calculated by relations (2.40) and (2.25) (with the adopted ansatz in
mind).
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Figure 4.16: Magnetic field profiles for the Whittaker equilibrium. Left: The Z-component of
the magnetic field on the plane Z = 0. Right: The toroidal component of the magnetic field
on the plane Z = 0.
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The poloidal components of B attain values of the order of mT, which are two orders of mag-
nitude lower than the respective ones found in Tokamaks [94]. The toroidal component de-
creasesmonotonically from the inner to the outer equatorial point of the boundary, as expected
because of the R−1 dependence of the dominant vacuum magnetic field, and its values are in
desirable levels.

Two profiles for the velocity field components are shown in Fig. 4.17. Both the values
and the behaviour of the vector field in question are physically acceptable and desirable. The
calculation was based in equations (2.41) and (2.26).
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Figure 4.17: Ion velocity field profiles for the Whittaker equilibrium. Left: The R-component
of the velocity field on the plane R = 1. Right: The toroidal component of the velocity field
on the plane R = 1.

Additionally, fromFig. 4.18, one cannotice that the poloidalAlfvénicMachnumber demon-
strates a behaviour similar to the one of the double Beltrami equilibrium (Fig. 4.8). Relation
(4.28) was used, as in the previous case. The poloidal velocity values are once again sub-
Alfvénic, and the first derivative of the poloidal velocity is discontinuous on the velocity axis.
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Figure 4.18: The profile of the poloidal Alfvénic Mach number on the plane Z = 0 for the
Whittaker equilibrium.

The next quantity of interest is the current density, found via Ampere’s law, and two profiles
can be seen in Fig. 4.19. We note that both JZ and Jϕ have desirable profiles and values that
range between 102 − 104 A/m2.
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Figure 4.19: Current density profiles for theWhittaker equilibrium. Left: The Z-component of
the current density on the plane Z = 0. Right: The toroidal component of the current density
on the plane Z = 0.

The generated electric field (found by Ohm’s law (1.62)) ranges from 103 to 104 V/m (Fig.
4.20). The toroidal component of the electric field is once more equal to zero, for the same
reasons as in Section 4.1.3.
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Figure 4.20: Poloidal electric field profiles for the Whittaker equilibrium. Left: The R-
component of the electric field on the plane R = 1. Right: The Z-component of the electric
field on the plane R = 1.

Finally, we proceed to a computation of the plasma pressure profile, bymeans of eq. (2.48)
for the current ansatz. The result is shown in Fig. 4.21. This profile is almost optimal for the
scope of controlled thermonuclear fusion, for mainly three reasons. In the first place, the
plasma pressure values are ideal, for reasons discussed in the double Beltrami equilibrium in
the respective section. Secondly, it is a peaked profile, with only a minor deviation from the
magnetic axis due to the plasma flow. Thirdly, the pressure attains values very close to zero
on the boundary. A final consideration to keep inmind is that the pressure is well stratified, as
seen in the contour plot of Fig. 4.22. This organisation is much better that the respective one
of the double Beltrami case (Fig 4.12). One should expect a very effective plasma confinement
from a stratified pressure profile with the aforementioned characteristics.
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Figure 4.21: The plasma pressure profile on the Z = 0 plane for the Whittaker equilibrium.
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Figure 4.22: The pressure contours in a torus cross section, along with the magnetic and ion
surfaces for the Whittaker equilibrium.
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4.2 FRC Solovév equilibrium

4.2.1 Equilibrium construction
For the final application we shall utilise the theoretical methodologies and frameworks ex-

pounded in Section 3.3 for the construction of another axisymmetric equilibrium state, which
concerns field-reversed configurations (FRCs) as we previously argued. We stress again for
the sake of clarity that this is an MHD-like equilibrium state with sheared poloidal flows, al-
though it is predicted in the scope of the Hall MHDmodel for a specific selection of the ansatz
for the free parameters. Generally speaking, the analysis is estimated to be much easier from
the previous sections, as Ψ ≡ Φ, and we already have a solution at hand, namely (3.102), the
behaviour of which is well-studied.

For the needs of this application we will exploit some numerical values of the Princeton
FRC (PFRC), presented in [100], which we list in Table 4.3, along with other geometrical and
physical parameters.

Table 4.3: Numerical values for the Solovév equilibrium parameters.

Parameter Value Units
PFRC Minor axis a 0.025 m
PFRC Major axis b 0.075 m
PFRC Major radius R0 b/2 m
PFRC Axial distance of the magnetic axis Ra 2R0/

√
2 m

PFRC Elongation κ ≡ δ 1/3
PFRC Central plane axial magnetic field Ba 5.5 T
PFRC Equilibrium electron number density n0 5.7 × 1020 m−3

Vacuum permeability µ0 4π × 10−7 H/m
Ion mass (for protonic plasma) mi 1.67 × 10−27 kg

It is interesting that only one ansatz parameter appears in the two GS equations - either m1
or n1, since n1 = −m1. By assumption, m2 = n2 = 0 and also f0 + g0 = 0 due to absence of
vacuum toroidal magnetic field. As for f1 and g1, they are indefinite and in any case do not
concern us since they no longer appear in the GS equations (3.100), (3.101). We shall leave
the determination of the only free parameter, m1 for later whenwe address the computation of
the equilibrium quantities. The parameters m0 and n0 will also concern us later, when we will
endeavour to optimise the pressure profile so that it vanishes on the separatrix. The reader
should also bear in mind that the same normalisation scheme (Section 1.4.3.2) holds, albeit
with different coordinates, ξ and ζ which, as we discussed in Section 3.3, are basically the R
and Z physical coordinates normalised with respect to the radius of the magnetic axis, Ra.

With that being said, let us work on the part of the solution (3.102) without the constant-
term factor, i.e.

Ψ(ξ, ζ) ≡ Φ(ξ, ζ) =

[
ζ2ξ2 +

δ2

4
(ξ2 − 1)2

]
, (4.33)

with the aim of presenting the basic characteristics of this flux function on a poloidal cross-
section. The constant term will be added later on for the needs of the equilibrium quantities.
Figure 4.23 depicts some contours of the flux function in question, with the values of PFRC
given.
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Figure 4.23: The (common) contours of the magnetic and the ion velocity surfaces for the
Solovév equilibrium. The outer closed magnetic surface represents the separatrix.

Aswe can see, the behaviour of the poloidalmagnetic flux is the expected for a Solovév equilib-
rium, with closed, nested magnetic surfaces with elliptical cross sections in the vicinity of the
magnetic axis and the outer part of the separatrix. Overall, their form resembles a D-shape,
although in this section this topological property is embedded in the solution and was not
deemed necessary to be imposed, as in the two previous Tokamak-relevant equilibria. We fur-
ther observe a Shafranov shift of the magnetic surfaces with respect to the geometrical centre
of the formation, the etiology of which we have already discussed in the previous sections.

4.2.2 Equilibrium quantities
In order to calculate the physical quantities of interest for the current equilibrium,we ought

to give a numerical value to m1, as we stated. In light of the definition of the toroidal current
density for an MHD equilibrium, Jϕ = −∆⋆Ψ/ξ = −m1ξ (due to (3.101)), one may select a
reference value of the toroidal current density and specify the value of m1 in that way. For our
scope, wewill select as a reference value the following: Jϕ0 = 2× 105 A/m2, which stems from
experimental evidence [101]. Therefore, the empirical definition of m1 will read m1 = |Jϕ0/Ja|,
where we divided by the reference current density Ja = Ba/(Raµ0). In addition, it was found
appropriate to rescale the flux function properly for better results. Nonetheless, since we have
a non-homogeneous differential equation, we have to rescale both the flux function Ψ and the
non-homogeneous coefficient m1 in order to be consistent.

After these manipulations, we present a profile of the dimensionless flux function in Fig-
ure 4.24. This behaviour is expected, because in Section 3.3 we noted that the magnetic flux
vanishes on the magnetic axis (which is located at ξ = 1) for the current equilibrium. On the
boundary, the poloidal flux function attains a constant value (see eq. (3.103)).
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Figure 4.24: The (dimensionless) flux function profile for the Solovév on the plane ζ = 0.

As far as the magnetic field is concerned, we only have to examine its poloidal compo-
nents since for our application the toroidal magnetic field vanishes (see Section 3.3.2). The
components in question are depicted in Fig. 4.25.
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Figure 4.25: Magnetic field profiles for the Solovév equilibrium. Left: The ξ-component of the
magnetic field on the plane ξ = 1. Right: The ζ-component of the magnetic field on the plane
ξ = 1.

The calculation for Bp was based on the well-known relation Bp = ξ−1∇Ψ ×∇ϕ (see eq.
(2.25)). The plot of Fig. 4.25 indicates an appropriate behaviour of the poloidal magnetic
field, with its values within desired levels as well.

Fig. 4.26 demonstrates the well-behaved plasma velocity for the Solovév equilibrium.
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Figure 4.26: Plasma velocity field profiles for the Solovév equilibrium. Left: The ξ-component
of the velocity field on the plane ξ = 1. Right: The ζ-component of the velocity field on the
plane ξ = 1.
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One should note that, since Ψ ≡ Φ, the same relations will hold as those for themagnetic field.
Once again, there exists no toroidal velocity field - the flows are purely poloidal. The reader
should also bear in mind that this velocity refers to the whole plasma7 and not the ion fluid,
as in this case no separation of fluids has taken place.

The poloidal Alfvénic Mach number (Fig. 4.27) has the same behaviour as in the previous
equilibria, indicating sub-Alfvénic plasma velocities.
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Figure 4.27: The profile of the poloidal Alfvénic Mach number on the plane ζ = 0 for the
Solovév equilibrium.

Proceeding to the current density, we deduce that the only non-vanishing component will
be the toroidal one, since Bϕ = 0. Given by relation: Jϕ = −m1ξ, its profile is depicted in Fig.
4.28.
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Figure 4.28: Toroidal current density profile for the Solovév equilibrium on the plane ζ = 0.

As expected, it is monotonically decreasing from the inner to the outer part of the separatrix,
with values O(106 A/m2) which are physically acceptable. Note that no large-scale electric
field develops in the current equilibrium, by virtue of MHD Ohm’s law for velocities parallel
to the magnetic field.

Last but not least, for the pressure computation we suppose that m0 = 0, and we further
select n0 = 0.0458814, a value that renders the pressure zero on the inner part of the separatrix.
In view of relation (2.48) under the scope of the current ansatz, we present the pressure profile
in Fig. 4.29.

7MHD, however, is derived in the limit me
mi

→ 0.
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Figure 4.29: The plasma pressure profile on the ζ = 0 plane for the Solovév equilibrium.

This is a fine pressure profile for the needs of magnetic confinement for the same reasons as
in the Whittaker equilibrium. Its values are optimal, it is peaked on axis and it is sufficiently
stratified (see Fig. 4.30), attaining a vanishing value in the inner part of the separatrix and
a value very close to zero in the outer part of it. However, one can notice that this particu-
lar pressure function possesses two X-points inside the domain of the configuration, which
may be proven to be problematic for the confinement of plasma 8. It is conjectured that the
appearance of these X-points is attributed to the topological properties of the Solovév solu-
tion (3.92), which also demonstrates a similar behaviour on the two inner separatrix points:
(0,± δ

2

√
2 − ϵ), as seen in Fig. 3.1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.2

-0.1

0.0

0.1

0.2

ξ

ζ Ψ

P

Figure 4.30: The pressure contours in a torus cross section, along with the magnetic surfaces
for the Solovév equilibrium. The two X-points that the pressure possesses are also illustrated
in orange color.

8This interesting result should be a flow effect because in the static MHD Solovev case P ∝ Ψ. That is, the flow
results to displacement of the static pressure X-points in the plasma.
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5
Conclusions and future prospects

Entia non sunt multiplicanda praeter necessitatem
(Entities must not be multiplied beyond necessity).

Occam’s razor1

5.1 Summary and main conclusions
In the current thesis a family of analytic solutions to the Hall MHD GS-Bernoulli system

was derived, and then applied to axisymmetric configurations in the scope of magnetic con-
finement fusion.

In the first introductory chapter, we presented the basic principles that govern the bizarre
behaviour of plasma, along with the fundamental concepts of controlled thermonuclear fu-
sion. After a brief presentation of the toroidal confinement systems, we presented some no-
table theorems that dictate the plasma magnetic confinement. We then discussed how one
should describe plasma, starting with the widely employed MHD model and its implications,
among which is Spitzer’s law and the so-called Alfvén’s theorem. On this basis we conducted
a generalisation of ideal MHD for a two-fluid plasma, introducing the Extended Magneto-
hydrodynamics (XMHD) model and the Alfvén normalisation scheme that was used for the
needs of the current thesis. The Hall MHD model was then recovered as a special case of the
XMHD one in the limit of vanishing electron inertia (de → 0).

In the second chapter we formulated the Hamiltonian description of the ideal fluid, start-
ing with the ordinary, canonical Hamiltonian description and then moving on to the non-
canonical Hamiltonian description in the Eulerian frame of description for plasmas. After
perceiving the degeneracy of the Poisson operator, we identified the kinematic constants of
such a system, the Casimir invariants, and on this basis we postulated the Energy-Casimir
variational principle. Owing to the Hamiltonian structure that Hall MHD possesses, this vari-
ational principlewas then employed for the case of axisymmetric plasmaswith incompressible
ion flows. After writing down the Hamiltonian functional and the axisymmetric Hall MHD
Casimirs, we deduced a system of two Grad-Shafranov equations and a Bernoulli one that
concerns the plasma pressure. We then realised that the arbitrariness of the free functions
may give rise to different types of equilibria, depending on the ansatz that we select for them.
Three notable cases were identified, along with a more general one. All four of them may be
potentially suitable for the needs of magnetic confinement fusion.

In the third chapter we proceeded to seek solutions for each of the four types of equilibria
that stem from the adopted ansatz. Thereafter, wemanipulated the first case properly in order

1This philosophical principle advocates that when provided with conflicting hypotheses concerning the same
prediction, one should usually choose the one that involves the fewest assumptions.
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to prove that its solutions are superpositions of Beltrami fields, and then we expressed these
solutions in terms of the Bessel functions. Afterwards, the non-homogeneous equation was
solved by inspection. The next species was treated in a similar manner, following a strong
analytic approach, and we ended up at solutions in terms of the Whittaker functions for the
homogeneous equation. For the purpose of solving the non-homogeneous equation, we ex-
ploited the similarity reduction procedure owing towhichwe successfully obtained a solution.
The third kind of solutions to theGS-Bernoulli systemwas found to be thewell-known Solovév
equilibrium. Thereonwe presented the static Solovév solution and on this basis we extended it
in the case of Hall MHD, where we ended in an MHD-like equilibrium with sheared poloidal
flows. Finally, we examined the most general case which features no restrictions for the ansatz
parameters, and demonstrated that even in that case, configurations with closedmagnetic and
ion velocity surfaces can possibly be retrieved.

In the fourth and foremost chapter, we took a step further to apply the previously derived
solutions to axisymmetric fusion devices, viz. Tokamaks and FRCs. However, before proceed-
ing to discuss their general characteristics and the extent to which they may be applicable in
fusion or astrophysical plasmas, it is worth realising that the whole subject of this master the-
sis emerged unexpectedly, originating initially from the double Beltrami states. The impetus
for the study of the double Beltrami equilibrium states was given by the author’s desire to
generalise the well-known force-free states (which are essentially the Beltrami states, see the
beginning of Section 3.1.1) to a more general context. This generalisation was further moti-
vated by the problematic aspects that the Beltrami states possess in controlled thermonuclear
fusion. To name only a few of them, those problematic aspects include the constant pressure
inside the fusion device and the fact that the relaxation towards Taylor states occurs under
very specific conditions [75], as mentioned in Chapter 3. So it came to pass that the author
engaged in a generalisation of force-free states to other models, namely Hall MHD which is
maybe the simplest two-fluid model that predicts superpositions of single Beltrami states as
solutions to its equations, when the free functions obtain a specific form. Those solutions
are the double Beltrami states, as discussed extensively in Chapter 3. A proper construction
of such an equilibrium was successfully carried out in Chapter 4 on the basis of the model’s
analytic equations presented in Chapter 3. For this purpose, we employed ITER parameters
for the physical and geometrical quantities, and for the determination of the flux surfaces we
imposed a D-shaped boundary based on the shaping method of [87], [88]. As we saw, this
equilibrium possesses desirable characteristics for a fusion application, namelywell organised
magnetic surfaces and physically appealing values and profiles for the equilibrium quantities
of interest. Nevertheless, we observed that the pressure does not vanish on the boundary. As
if that were not enough, following a thorough examination of the existing literature on the
double Beltrami states, there is considerable evidence [102] to postulate that double Beltrami
states are essentially metastable equilibrium states, because, as Gondal et al. suggest, they
tend to eventually relax to single Beltrami states. This loss of equilibrium may take place un-
der a plethora of circumstances, namely when certain scale parameters become degenerate
or even when the product of the magnetic helicity (3.2) with the ion helicity (3.3) becomes
positive [102], [103]. The aforementioned termination of equilibrium may also give rise to a
conversion of magnetic energy to flow kinetic energy [102]. A connection of the termination
of equilibrium with the roots of the Beltrami operator eigenvalues has also been established,
viz. the equilibrium comes to an end when one of the two roots disappears or even when they
become equal [102]. It therefore becomes evident that the termination of equilibrium for the
double Beltrami states is not a rarely encountered phenomenon, and of course it is not some-
thing one may wish to encounter in a magnetic confinement scenario. Nonetheless, this very
metastability they present may render them proper candidates for the study of other phenom-
ena, mainly in astrophysical environments [103], [104]. Another circumstance where loss of
equilibrium takes place was observed during the desire of the author to generalise the dou-
ble Beltrami states to three dimensional plasmas, following the footsteps of a previous study
[91]. This generalisation was going to be executed by perturbing an axisymmetric equilib-
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rium state with a similar, translationally symmetric one. Unfortunately, we conjecture that
during this perturbation, the resulting three-dimensional state ceases to be in equilibrium due
to the presence of the vacuum toroidal magnetic field - which of course does not exist in the
Beltrami states. With all of these aspects in mind, the need of resorting to other equilibrium
states emerged during the present study. Thus it transpired to extend the initial study of the
double Beltrami states to similar equilibria, predicted also from the non-canonical Hamilto-
nian structure of Hall MHD.

Successive to the double Beltrami states, we studied a more general counterpart of them,
namely equilibria in terms of the Whittaker functions for ITER-like scenarios. For the deter-
mination of the boundary, the same shaping method was used as with the case of the dou-
ble Beltrami equilibrium. The Whittaker equilibrium proved to be interesting by many as-
pects, mainly because the pressure profile presented excellent stratification and optimal val-
ues O(105 − 106 Pa). The rest of the quantities demonstrated acceptable profiles, with only
exception the poloidal magnetic field - the values of which were slightly low for a Tokamak.
More research is needed to assess the applicability of these solutions to realistic scenarios in
space and laboratory plasmas.

The last kind of equilibrium was based on the well known Solovév solution to the Grad-
Shafranov equation [68]. Here, we generalised this solution in the framework of theHallMHD
model, where we ended back in an MHD-like equilibrium with sheared poloidal flows. This
equilibrium was built based on PFRC numerical values, and possessed sufficient characteris-
tics for the scope of controlled thermonuclear fusion, among which was the interesting pres-
sure profile with the 2 spontaneous X-points. The other physical quantities were excellently
behaved, both regarding their form and values in a poloidal cross section. This solution has
been extensively studied for the needs of magnetic confinement fusion and has even been ex-
tended for the presence ofMHDflows [105], [106], [107]. For our case, the presence of sheared
poloidal flows may signify that this equilibrium may be quite suitable for the study of the L-
H transition and ELMs in the pedestal region of the plasma domain. To further strengthen
this argument, one should recall that the gradient length scales of the physical quantities may
become comparable to the ion skin depth inside the pedestal region, which in turn means
that Hall MHD provides an adequate framework for choosing this Solovév solution as a good
candidate for transitions towards high confinement modes. We should note, however, that in
this case the numerical values of the free parameters should be chosen accordingly so that the
resulting profiles resemble typical ones encountered in H-mode Tokamaks. Finally, whether
this solution can be extended to astrophysical plasmas is a matter that requires further inves-
tigation.

Overall, the calculations of the three equilibrium states from the respective analytic so-
lutions demonstrate that the plasma is organised into well-defined flux surfaces, which are
nested with respect to the magnetic axis. The pressure is peaked on axis, and is organised into
separate contours. What is truly intriguing though is that the Hall MHD model predicts an
evident departure of the ion fluid from the magnetic surfaces. The computations showed that
the ion fluid attains sub-Alfvénic velocities, while the separation of the two fluids produces
a large scale poloidal electric field which may be significant depending on the application.
Albeit the departure of the ion fluid from the magnetic surfaces occurs on scales of the order
of the ion depth, the Hall MHD model introduces corrections to the ordinary MHD one that
cannot be neglected, especially when one studies phenomena that concern microscales, like
transport, turbulence etc.

5.2 Future prospects
Given that the Hall MHD model enriches the - already complicated - underlying physical

processes behind plasma and opens the doors for a completely novel way of description, one
may wonder what other processes may emerge if one incorporates dissipation mechanisms in
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the current study. As an example, we present the work done in [108], where it is found that
the small-scale part (of the order of the ion skin depth) of a double Beltrami field can give rise
to resistive and viscous dissipations, although this part vanishes as the system approaches its
relaxed state. The authors also pointed a relation between the small-scale and the macroscale
structres of a double Beltrami system, for example that small-scale varying magnetic fields
may result in large-scale chaos-induced dissipations. Thus, it is apparent that many physical
phenomena are concealed from us when we limit our description to ideal Hall MHD systems,
the handling of which however may be very strenuous and complicated.

A further generalisation of this work to Extended Magnetohydrodynamics (XMHD) is
also viable, but one may wonder whether this model is excessive for the needs of magnetic
confinement fusion, since the introduced length scales, related to electron inertia, are even
smaller than the ones of the Hall MHD model. Such a description is followed in [28].

As far as the geometry of the constructed configurations is concerned, a quite interesting
prospect this study holds pertains the generalisation of the said equilibria in the case of helical
symmetry, which is a more general symmetry (see Appendix B) encountered in Stellarators.
This kind of symmetry includes axial and translational symmetries as special cases, and may
be proper for the description of other confinement systems that feature a more complicated
topology of the magnetic surfaces. A study in this framework was carried out in [22].

In addition, the solutions of Chapter 3 could be applied for up-down asymmetric configura-
tions, including the one of ITER that features an X-point in the divertor region. This topology
is auxillary for the confinement of plasma, since the particles are guided in a specific region
that it designed to withstand the tremendous thermal loads created during thermonuclear
reactions, without affecting the rest of the reactor’s walls.

As both of the double Beltrami and the Whittaker equilibria feature a vacuum toroidal
magnetic field, if we perturb such states with similar translationally symmetric ones with the
aim of constructing three-dimensional equilibria (see [91]), it is conjectured that the resulting
configuration will be off-equilibrium. Nevertheless, it is interesting to examine such cases to
see how the formation changes. Due to the so-called KAM theorem [109], [110], we expect
the invariant tori (which in our case are the magnetic surfaces) to collapse, and therefore a
subsequent formation of magnetic islands should take place, as happened in previous work of
the author [91]. However, further analysis and simulations of such scenarios are required to
corroborate this conjecture.

Another prospect of the present study is the extension of the GS-Bernoulli system for non-
constant plasma density. The reader should recall that all of the current analysis was carried
out for ρ = 1, which leads to incompressible ion velocity flows. A further extension may con-
cern the addition of pressure anisotropy, for which an extensive analysis can be found in [22].
Unfortunately, in this case no analytic solutions exist, and one should resort in complicated
numerical schemes to solve the resulting Generalised Grad-Shafranov-Bernoulli (GGSB) sys-
tem.

In the scope of astrophysics and particularly solar physics, we reckon that the proposed
analytic solutions may be appropriate for the study of many systems, especially the ones that
include small-scale processes (e.g. magnetic reconnection). Some examples have already be
given in the previous section regarding the double Beltrami states and their metastable be-
haviour. The reader should bear in mind that although the underlying physics remain the
same as in laboratory environments, the boundary conditions differ. As always, what matters
the most is to make hypotheses that reflect the physics of the system in hand in the greatest
extent possible.

Finally, it should be noted that there is potential for further study in large-scale numerical
frameworks such as HELENA, EFIT and VMEC, whereon themethods that we presented have
yet to be implemented.

It is our earnest hope that the equilibria constructed in this thesis will contribute - even if
only slightly - towards understanding the physical processes that occur in two-fluid laboratory
or even astrophysical plasmas.
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A
An alternative way to solve the Double

Beltrami system

The homogeneous counterpart of the system of equations (3.24) and (3.25) can be put in
matrix form as

∆⋆

(
Ψ
X

)
=

(
W1 W2
W3 W4

)(
Ψ
X

)
, (A.1)

where the coefficients Wi, i = {1, 2, 3, 4} are

W1 = −
(

g2
1 −

1
d2

i

)
, W2 = −

(
g1

di
+

1
f1d3

i

)
, W3 =

(
g1

di
+

1
f1d3

i

)
,

and W4 =

(
1
d2

i
− 1

f 2
1 d4

i

)
.

(A.2)

We observe that the system (A.1) is in fact an eigenvalue problem for the the Shafranov oper-
ator ∆⋆. Hence, it is reasonable to write down both flux functions in (A.1) as a linear combi-
nation of eigenfunctions ξi of the Shafranov operator

Ψ =
∑

i

CΨ
i ξi, and X =

∑
i

CX
i ξi, (A.3)

where CΨ,X
i are some coefficients that we seek. Since ξi are the eigenfunctions of the Shafranov

operator, it is evident that

∆⋆

(
Ψ
X

)
=
∑

i

(
λiCΨ

i ξi
λiCX

i ξi

)
, (A.4)

where λi are the eigenvalues of the Shafranov operator - not to be confused with the eigenval-
ues of the curl operator (3.27). Therefore, the system (A.1) assumes the form

∑
i

(
λiCΨ

i ξi
λiCX

i ξi

)
=
∑

i

(
W1 W2
W3 W4

)(
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, (A.5)

or, equivalently

∑
i

λiξi
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CΨ
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CX
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=
∑

i

ξi
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W1 W2
W3 W4

)(
CΨ

i
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)
. (A.6)
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The above equation must hold for every single term, due to the fact that the eigenfunctions ξi
are linearly independent from their very definition. Hence, we omit the index i and we get

λξ

(
CΨ
CX

)
= ξ

(
W1 W2
W3 W4

)(
CΨ
CX

)
. (A.7)

It is evident that our problem reduces to the eigenvalue problem(
W1 W2
W3 W4

)(
CΨ
CX

)
= λ

(
CΨ
CX

)
, (A.8)

for which the characteristic equation reads

det(W − λ±12×2) = 0, (A.9)

whereW is theWi-coefficient matrix, λ± are the two eigenvalues we seek and 12×2 is the 2× 2
identity matrix. A straightforward calculation results in

λ± = ± 1
2d4

i f 2
1

{
∓1 ± 2d2

i f 2
1 ∓ d4

i f 2
1 g2

1 + (1 + d2
i f1g1)

√
1 + d2

i f1[−4 f1 + g1(−2 + d2
i f1g1)]

}
.

(A.10)
The next step is to find the eigenvectors of theW-matrix. By substituting λ = λ+ to the system
(A.8), we find (

W1 − λ+ W2
W3 W4 − λ+

)(
C+

Ψ
C+
X

)
= 0. (A.11)

As concerns the system (A.11), the 2 equations are linearly dependent, since we imposed
that the determinant of the coefficient matrix is zero. An apparent consequence of the above
statement is that the system is underdetermined, and one of the two coefficients ought to be
considered as a free parameter. Hence, we have the freedom to set C+

Ψ = 1 and then the system
becomes

(W1 − λ+) +W2C+
X = 0, (A.12)

W3 +W4 − λ+C+
X = 0, (A.13)

from which we conclude that

C+
X =

λ+ −W1

W2
, and similarly for λ = λ− : C−

X =
λ− −W1

W2
. (A.14)

What remains is to find the eigenstates ξ± of the Shafranov operator, via the equation

∆⋆ξ± = λ±ξ±, (A.15)

for which the solutions are recovered if one follows exactly the same procedure as the one
presented in Section 3.1.3.1. Finally, the two flux functions now read

Ψ̃h = ξ+ + ξ−, (A.16)

X̃h = C+
X ξ+ + C−

X ξ−. (A.17)
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B
Generalisation of the Double Beltrami

Grad-Shafranov equation for helical symmetry

In this section of the Appendix we provide a generalisation of the Double Beltrami Grad-
Shafranov equation (3.35) in helical coordinates. This coordinate system, along with the as-
sumption of helical symmetry, are core concepts for the study of magnetic confinement in de-
vices of three-dimensional geometry, like Stellarators. Here, we carry out a brief discussion
concerning the basics aspects of the coordinate system in question; the interested reader is
referred to [22], [111] and [112] for a more thorough approach.

The helical coordinate system (r, u, ζ) is related to the ordinary cylindrical coordinate sys-
tem for toroidal systems, (R, ϕ, Z), as

r = R,
u = ℓϕ + nZ,
ζ = Z,

(B.1)
(B.2)
(B.3)

where ℓ and n are real constants, and u can be interpreted as a ”helical angle”. We may define
a helical vector tangent to any helicoid, i.e. a surface with u = const. as

h =
ℓêZ − nrêϕ

ℓ2 + n2r2 , with: h · h ≡ k2 =
1

ℓ2 + n2r2 (scaling factor). (B.4)

The helical vector h is tangent to the helix (r =const.; u =const.) and points along the direction
resulting from a rotation around the Z axis and a parallel translation along the same axis. We
must stress the fact that h is a divergence-free, Beltrami vector

∇ · h = 0, ∇× h = −2nℓk2h. (B.5)

Helical symmetry translates to h ·∇ f = 0 ∀ f = f (r, u), which means that any scalar func-
tion f does not change along the helical direction h, or equivalently that there is no explicit
dependence from the ζ coordinate. With that being said, the poloidal representations (3.30)
for the Beltrami fields A± are generalised to

A± = k−1A±h(r, u)h +∇Ψ±(r, u)× h, (B.6)

This representation decomposes each one of the two Beltrami fields in two components; one
along the helical direction h and one lying on the ”poloidal” plane, that is the plane perpen-
dicular to the helical vector h. Owing to (B.6) and (B.5), the curl of the Beltrami fields reads

∇×A± = (k−2L Ψ± − 2nℓkA±h)h +∇(k−1A±h)× h, (B.7)
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symmetry

where L = −∇ · (k2∇) is a Shafranov-like, linear self-adjoint differential operator. Employ-
ing (B.5) and (B.7) the equation respective to (3.1) takes the form

(k−2L Ψ± − 2nℓkA±h)h +∇(k−1A±h)× h = λ±k−1A±hh + λ±∇Ψ± × h (B.8)

A projection of relation (B.8) along the direction of the helical vector yields

k−2L Ψ± − 2nℓkA±h = λ±k−1A±h, (B.9)

while a projection normal to h yields

A±h = k λ±Ψ± (B.10)

By combining relations (B.9) and (B.10), we readily retrieve the generalised helically symmet-
ric Grad-Shafranov equation for the Double Beltrami states

k−2L Ψ± − 2nℓk2λ±Ψ± = λ2
±Ψ±. (B.11)
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C
Digression on the Whittaker functions

In 1903,Whittaker proposed a limiting case of the so-called hypergeometric function, in order
to show that many important special functions - that even arise in physics - can be derived by
specialising and transforming a single new function [113]. Whittaker addressed the problem
of solving the following second order ODE

d2u
dz2 +

(
−1

4
+

k
z
+

1
4 − m2

z2

)
u(z) = 0, (C.1)

where k, m, z ∈ C and u(z) is a complex function of z. Eq. (C.1) has a regular singularity
at 0 and an irregular singularity at ∞. In the case where 2m /∈ Z, the linearly independent
solutions to this equation are

Mk,m(z) = zm+1/2e−z/2
∞∑

n=0

(m − k + 1
2 )n

n!(2m + 1)n
zn

= z1/2+me−z/2

[
1 +

1
2 + m − k

1!(2m + 1)
z +

( 1
2 + m − k)( 3

2 + m − k)
2!(2m + 1)(2m + 2)

z2 + . . .

]
,

(C.2)

andMk,−m(z) [81]. In equation (C.2), the notation (a)n has been used that indicates aPochham-
mer symbol [78], i.e. a rising factorial

(a)n =

{
1, n = 0,
a(a + 1)(a + 2) . . . (a + n − 1), n ̸= 0.

(C.3)

The solutions Mk,±m are regular at z = 0 and valid for every finite z [81]. However, owing
to the fact that the aforementioned solutions cease to be valid for integer values of 2m, Whit-
taker and Watson [81] proposed another solution to eq. (C.1), that has the following integral
representation

Wk,m(z) =
e−z/2zk

Γ( 1
2 − k + m)

ˆ ∞

0

t−k−1/2+m
(

1 +
t
z

)k−1/2+m

e−tdt, (C.4)

which is valid whenever Re(k − 1/2 − m) ≤ 0 and k − 1/2 − m /∈ Z. In (C.4), Γ(z) is the
so-called Gamma function [78]. The solutions (C.2) and (C.4) to the ODE (C.1) comprise a set
of special functions that are known in the literature as the Whittaker functions. There also
exist relations that connect the latter with the known confluent hypergeometric functions, as

Mk,m(z) =e−z/2zm+1/2M
(

1
2
+ m − k, 1 + 2m; z

)
, (C.5)

Wk,m(z) =e−z/2zm+1/2U
(

1
2
+ m − k, 1 + 2m; z

)
, (C.6)
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where M(a, b; z) and U(a, b; z) are the confluent hypergeometric functions of the first and
second kind respectively, for which there exist the following convenient integral representa-
tions [78]

M(a, b; z) =
Γ(b)

Γ(a)Γ(b − a)

ˆ 1

0

eztta−1(1 − t)b−a−1dt, for b > a > 0, (C.7)

U(a, b; z) =
1

Γ(a)

ˆ ∞

0

e−ztta−1(1 + t)b−a−1dt, for Re(z) > 0, b > a > 0. (C.8)

On the basis of Whittaker functions, one may deduce many well-known special functions that
arise in physics. The interested reader is referred to [113] for some notable examples.

Finally, we illustrate the behaviour of the Whittaker functions for some values of k and m
in the plots of Figures C.1 and C.2.

Figure C.1: Plot of the Whittaker Mk,m(z) function for some values of k and m.
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Appendix C – Digression on the Whittaker functions

Figure C.2: Plot of the Whittaker Wk,m(z) function for some values of k and m.
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