Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/14962
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mavridis, D. | en |
dc.contributor.author | Moustaki, I. | en |
dc.date.accessioned | 2015-11-24T17:44:55Z | - |
dc.date.available | 2015-11-24T17:44:55Z | - |
dc.identifier.issn | 1061-8600 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/14962 | - |
dc.rights | Default Licence | - |
dc.subject | latent variable models | en |
dc.subject | masking | en |
dc.subject | outliers | en |
dc.subject | robustness | en |
dc.subject | swamping | en |
dc.subject | multiple outliers | en |
dc.subject | models | en |
dc.subject | fit | en |
dc.title | The Forward Search Algorithm for Detecting Aberrant Response Patterns in Factor Analysis for Binary Data | en |
heal.type | journalArticle | - |
heal.type.en | Journal article | en |
heal.type.el | Άρθρο Περιοδικού | el |
heal.identifier.primary | DOI 10.1198/jcgs.2009.08060 | - |
heal.identifier.secondary | <Go to ISI>://000273082500013 | - |
heal.identifier.secondary | http://amstat.tandfonline.com/doi/abs/10.1198/jcgs.2009.08060 | - |
heal.language | en | - |
heal.access | campus | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Αγωγής. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης | el |
heal.publicationDate | 2009 | - |
heal.abstract | In this article we implement a for-ward search algorithm for identifying atypical subjects/observations in factor analysis models for binary data. Forward plots of goodness-of-fit statistics, residuals, and parameter estimates help us identify aberrant observations and detect deviations from the hypothesized model, Methods to initialize, progress, and monitor the search are explored. Simulation envelopes are constructed to investigate whether changes in the statistics being monitored are solely due to random variation. One real and two simulated datasets are used to illustrate the performance of the suggested algorithm. The two simulated datasets explore the effectiveness of the method in the presence of a single outlier and a cluster of outliers. Matlab computer code for implementing, the proposed methods is available online. | en |
heal.journalName | Journal of Computational and Graphical Statistics | en |
heal.journalType | peer-reviewed | - |
heal.fullTextAvailability | TRUE | - |
Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) |
Files in This Item:
There are no files associated with this item.
This item is licensed under a Creative Commons License