Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/9316
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTzakos, A. G.en
dc.contributor.authorGalanis, A. S.en
dc.contributor.authorSpyroulias, G. A.en
dc.contributor.authorCordopatis, P.en
dc.contributor.authorManessi-Zoupa, E.en
dc.contributor.authorGerothanassis, I. P.en
dc.date.accessioned2015-11-24T16:48:24Z-
dc.date.available2015-11-24T16:48:24Z-
dc.identifier.issn0269-2139-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/9316-
dc.rightsDefault Licence-
dc.subjectAmino Acid Sequenceen
dc.subjectAquaporins/metabolismen
dc.subjectBinding Sitesen
dc.subject*Catalytic Domainen
dc.subjectChlorides/*metabolismen
dc.subjectCrystallography, X-Rayen
dc.subjectHumansen
dc.subjectModels, Molecularen
dc.subjectPeptides/*metabolismen
dc.subjectPeptidyl-Dipeptidase A/*chemistry/*physiologyen
dc.subjectProtein Structure, Tertiaryen
dc.subjectStructure-Activity Relationshipen
dc.subjectWater/metabolismen
dc.titleStructure-function discrimination of the N- and C- catalytic domains of human angiotensin-converting enzyme: implications for Cl- activation and peptide hydrolysis mechanismsen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primary10.1093/protein/gzg122-
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/14983080-
heal.identifier.secondaryhttp://peds.oxfordjournals.org/content/16/12/993.full.pdf-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Χημείαςel
heal.publicationDate2003-
heal.abstractHuman somatic angiotensin I-converting enzyme (sACE) has two active sites present in two sequence homologous protein domains (ACE_N and ACE_C) possessing several biochemical features that differentiate the two active sites (i.e. chloride ion activation). Based on the recently solved X-ray structure of testis angiotensin-converting enzyme (tACE), the 3D structure of ACE_N was modeled. Electrostatic potential calculations reveal that the ACE_N binding groove is significantly more positively charged than the ACE_C, which provides a first rationalization for their functional discrimination. The chloride ion pore for Cl2 (one of the two chloride ions revealed in the X-ray structure of tACE) that connects the external solution with the inner part of the protein was identified on the basis of an extended network of water molecules. Comparison of ACE_C with the X-ray structure of the prokaryotic ClC Cl(-) channel from Salmonella enterica serovar typhimurium demonstrates a common molecular basis of anion selectivity. The critical role for Cl2 as an ionic switch is emphasized. Sequence and structural comparison between ACE_N and ACE_C and of other proteins of the gluzincin family highlights key residues that could be responsible for the peptide hydrolysis mechanism. Currently available mutational and substrate hydrolysis data for both domains are evaluated and are consistent with the predicted model.en
heal.publisherOxford University Pressen
heal.journalNameProtein Engineeringen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά). ΧΗΜ

Files in This Item:
File Description SizeFormat 
Tzakos-2003-Structure-function d.pdf354.45 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons