Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/8307
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPanagopoulou, M. A.en
dc.contributor.authorStergiou, D. V.en
dc.contributor.authorRoussis, I. G.en
dc.contributor.authorPanayotou, G.en
dc.contributor.authorProdromidis, M. I.en
dc.date.accessioned2015-11-24T16:40:45Z-
dc.date.available2015-11-24T16:40:45Z-
dc.identifier.issn0003-2670-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/8307-
dc.rightsDefault Licence-
dc.subjectimpedimetric biosensorsen
dc.subjectrenneten
dc.subjectfood analysisen
dc.subjectkappa-caseinen
dc.subjectmilk coagulationen
dc.subjectsurface plasmon resonanceen
dc.subjectmilken
dc.subjectenzymesen
dc.subjectmicelleen
dc.titleKappa-casein based electrochemical and surface plasmon resonance biosensors for the assessment of the clotting activity of renneten
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDOI 10.1016/j.aca.2011.11.012-
heal.identifier.secondary<Go to ISI>://000300764700017-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0003267011014875/1-s2.0-S0003267011014875-main.pdf?_tid=441a4c4327d198e2758fe160763b0a7e&acdnat=1333037232_d54414724ffcb072834b06df58533b1a-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Χημείαςel
heal.publicationDate2012-
heal.abstractWe report for the first time the development of kappa-casein (kappa-CN)-based electrochemical and surface plasmon resonance (SPR) biosensors for the assessment of the clotting activity of rennet. Electrochemical biosensors were developed over gold electrodes modified with a self-assembled monolayer of dithiobis-N-succinimidyl propionate, while SPR measurements were performed on regenerated carboxymethylated dextran gold surfaces. In both types of biosensor, kappa-CN molecules were immobilized onto modified gold surfaces through covalent bonding. In electrochemical biosensors, interactions between the immobilized kappa-CN molecules and chymosin (the active component of rennet) were studied by performing cyclic voltammetry, differential pulsed voltammetry, and electrochemical impedance spectroscopy (EIS) measurements, using hexacyanoferrate(II)/(111) couple as a redox probe. kappa-CN is cleaved by rennet at the Phe105-Met106 bond, producing a soluble glycomacropeptide, which is released to the electrolyte, and the positively charged insoluble para-kappa-casein molecule, which remains attached to the surface of the electrode. This induced reduction of the net negative charge of the sensing surface, along with the partial degradation of the sensing layer, results in an increase of the flux of the redox probe, which exists in the solution, and consequently, to signal variations, which are associated with the increased electrocatalysis of the hexacyanoferrate(11)/(111) couple on the gold surface. SPR experiments were performed in the absence of the redox probe and the observed SPR angle alterations were solely attributed to the cleavage of the immobilized kappa-CN molecules. Various experimental variables were investigated and under the selected conditions the proposed biosensors were successfully tried to real samples. The ratios of the clotting power units in various commercial solid or liquid samples, as they are calculated by the EIS-based data, were almost identical to those obtained with a reference method. In addition, EIS measurements showed an excellent reproducibility, lower than 5%. (C) 2011 Elsevier B.V. All rights reserved.en
heal.publisherElsevieren
heal.journalNameAnalytica Chimica Actaen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά). ΧΗΜ

Files in This Item:
File Description SizeFormat 
Prodromidis-2012-Kappa-casein based.pdf661.39 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons