Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/8056
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVarras, P. C.en
dc.contributor.authorZarkadis, A. K.en
dc.date.accessioned2015-11-24T16:38:31Z-
dc.date.available2015-11-24T16:38:31Z-
dc.identifier.issn1089-5639-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/8056-
dc.rightsDefault Licence-
dc.subjectcis-trans isomerizationen
dc.subjectnonperfect synchronizationen
dc.subjecttriphenylmethyl radicalsen
dc.subjectsubstituent constantsen
dc.subjectchemical-reactivityen
dc.subjectactivation-energiesen
dc.subjectperturbation-theoryen
dc.subjectbonden
dc.subjectbarriersen
dc.subjectphotochemistryen
dc.titleGround- and Triplet Excited-State Properties Correlation: A Computational CASSCF/CASPT2 Approach Based on the Photodissociation of Allylsilanesen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDoi 10.1021/Jp209583z-
heal.identifier.secondary<Go to ISI>://000299985100013-
heal.identifier.secondaryhttp://pubs.acs.org/doi/pdfplus/10.1021/jp209583z-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Χημείαςel
heal.publicationDate2012-
heal.abstractExcited-state properties, although extremely useful, are hardly accessible. One indirect way would be to derive them from relationships to ground-state properties which are usually more readily available. Herewith, we present quantitative correlations between triplet excited-state (T-1) properties (bond dissociation energy, D-0(T1), homolytic activation energy, E-a(T1), and rate constant, k(r)) and the ground-state bond dissociation energy (D-0), taking as an example the photodissociation of the C-Si bond of simple substituted allylsilanes CH2=CHC((RR2)-R-1)-SiH3 (R-1 and R-2 = H, Me, and Et). By applying the complete-active-space self-consistent field CASSCF(6,6) and CASPT2(6,6) quantum chemical methodologies, we have found that the consecutive introduction of Me/Et groups has little effect on the geometry and energy of the T-1 state; however, it reduces the magnitudes of D-0, D-0(T1) and E-a(T1). Moreover, these energetic parameters have been plotted giving good linear correlations: D-0(T1) = alpha(1) + beta(1) . D-0, E-a(T1) = alpha(2) + beta(2) . D-0(T1), and E-a(T1) = alpha(3) + beta(3) . D-0 (alpha and beta being constants), while k(r) correlates very well to E-a(T1). The key factor behind these useful correlations is the validity of the Evans-Polanyi-Semenov relation (second equation) and its extended form (third equation) applied for excited systems. Additionally, the unexpectedly high values obtained for E-a(T1) demonstrate a new application of the principle of nonperfect synchronization (PNS) in excited-state chemistry issues.en
heal.publisherAmerican Chemical Societyen
heal.journalNameJournal of Physical Chemistry Aen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά). ΧΗΜ

Files in This Item:
File Description SizeFormat 
Varras-2012-Ground- and Triplet.pdf458.29 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons