Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/7694
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarakitsios, S. P.en
dc.contributor.authorPapaloukas, C. L.en
dc.contributor.authorKassomenos, P. A.en
dc.contributor.authorPilidis, G. A.en
dc.date.accessioned2015-11-24T16:33:41Z-
dc.date.available2015-11-24T16:33:41Z-
dc.identifier.issn0304-3800-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/7694-
dc.rightsDefault Licence-
dc.subjectbenzeneen
dc.subjectmodelingen
dc.subjectartificial neural networksen
dc.subjecttraffic flow patternsen
dc.subjectair-qualityen
dc.subjectcarbon-monoxideen
dc.subjectpollutionen
dc.subjectalgorithmen
dc.subjectmilanen
dc.subjectareaen
dc.subjectno2en
dc.titleAssessment and prediction of benzene concentrations in a street canyon using artificial neural networks and deterministic models - Their response to "what if" scenariosen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDOI 10.1016/j.ecolmodel.2005.07.024-
heal.identifier.secondary<Go to ISI>://000236016700005-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0304380005003984/1-s2.0-S0304380005003984-main.pdf?_tid=396042d2cc98548b1b1f5303ad8f050a&acdnat=1335439377_fad4ff2e4504ec23abf7fdecdc1b6d85-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών και Τεχνολογιών. Τμήμα Βιολογικών Εφαρμογών και Τεχνολογιώνel
heal.publicationDate2006-
heal.abstractThe work deals with the comparison of two models: (i) an artificial neural network (ANN) and (ii) a semi empirical deterministic model (DET), used to simulate benzene concentrations in a street canyon. Furthermore, the response of models to 'what if scenarios' was also examined. The ANN was based on a training procedure using measurements collected in a specific street canyon (benzene concentrations, traffic density, vehicle's type distribution). The DET model was based on road traffic emission rate, wind speed and direction, and the geometrical characteristics of the road. Although both model, produced very good results, given the limited amount of data available, the ANN succeeded slightly better than DET in predicting benzene concentrations. On the other hand, the ANN is less able to reproduce the effect of significant changes in traffic flow patterns on benzene concentrations. The results from the simulations indicate that the ANN is a promising technique for benzene modeling in an urban environment and in can be used for environmental management purposes. (C) 2005 Elsevier B.V. All rights reserved.en
heal.journalNameEcological Modellingen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Karakitsios-2006-Assessment and predi.pdf587.09 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons