Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/37678
Full metadata record
DC FieldValueLanguage
dc.contributor.authorΓιαννάκης, Αλέξανδροςel
dc.contributor.authorGiannakis, Alexandrosen
dc.date.accessioned2024-05-21T08:00:18Z-
dc.date.available2024-05-21T08:00:18Z-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/37678-
dc.identifier.urihttp://dx.doi.org/10.26268/heal.uoi.17386-
dc.rightsDefault License-
dc.subjectΝευροεκφυλιστικά νοσήματαel
dc.subjectΜαγνητική τομογραφία εγκεφάλουel
dc.subjectΝόσος Alzheimerel
dc.subjectΝόσος Parkinsonel
dc.subjectΆνοια με σωμάτια Lewyel
dc.subjectΦλοιοβασικό σύνδρομοel
dc.titleΑλληλεπικαλυπτόμενη παθολογία νευροεκφυλιστικών νοσημάτωνel
dc.titleOverlapping pathology of neurodegenerative diseasesen
dc.typedoctoralThesisen
heal.typedoctoralThesisel
heal.type.enDoctoral thesisen
heal.type.elΔιδακτορική διατριβήel
heal.dateAvailable2024-05-21T08:01:18Z-
heal.languageelel
heal.accessfreeel
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείαςel
heal.publicationDate2024-03-12-
heal.bibliographicCitation1. Yiannopoulou KG, Papageorgiou SG. Current and Future Treatments in Alzheimer Disease: An Update. J Cent Nerv Syst Dis 2020; 12: 117957352090739. 2. Ferreira D, Mohanty R, Murray ME, et al. The hippocampal sparing subtype of Alzheimer’s disease assessed in neuropathology and in vivo tau positron emission tomography: a systematic review. Acta Neuropathol Commun 2022; 10: 166. 3. Alfalahi H, Dias SB, Khandoker AH, et al. A scoping review of neurodegenerative manifestations in explainable digital phenotyping. NPJ Parkinsons Dis 2023; 9: 49. 4. Akintade O, Pierres F. Acute presentation of dementia with Lewy bodies. Clinical Medicine 2019; 19: 327–330. 5. Vogt A-CS, Jennings GT, Mohsen MO, et al. Alzheimer’s Disease: A Brief History of Immunotherapies Targeting Amyloid β. Int J Mol Sci 2023; 24: 3895. 6. McDade EM. Alzheimer Disease. CONTINUUM: Lifelong Learning in Neurology 2022; 28: 648–675. 7. Polsinelli AJ, Apostolova LG. Atypical Alzheimer Disease Variants. CONTINUUM: Lifelong Learning in Neurology 2022; 28: 676–701. 8. Devi G. A how-to guide for a precision medicine approach to the diagnosis and treatment of Alzheimer’s disease. Front Aging Neurosci; 15. Epub ahead of print 17 August 2023. DOI: 10.3389/fnagi.2023.1213968. 9. Armstrong MJ. Lewy Body Dementias. CONTINUUM: Lifelong Learning in Neurology 2019; 25: 128–146. 10. Thomas AJ, Taylor JP, McKeith I, et al. Development of assessment toolkits for improving the diagnosis of the Lewy body dementias: feasibility study within the DIAMOND Lewy study. Int J Geriatr Psychiatry 2017; 32: 1280–1304. 11. Yamada Y, Shinkawa K, Nemoto M, et al. Speech and language characteristics differentiate Alzheimer’s disease and dementia with Lewy bodies. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 2022; 14: 101441. 12. Prasad S, Katta MR, Abhishek S, et al. Recent advances in Lewy body dementia: A comprehensive review. Disease-a-Month 2023; 69: 101441. 13. Pantelyat A. Progressive Supranuclear Palsy and Corticobasal Syndrome. CONTINUUM: Lifelong Learning in Neurology 2022; 28: 1364–1378. 14. Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013; 80: 496–503. 15. Snellman A, Lantero-Rodriguez J, Emeršič A, et al. N-Terminal and mid-region tau fragments as fluid biomarkers in neurological diseases. Brain 2022; 145: 2834–2848. 16. Toledo JB, Korff A, Shaw LM, et al. CSF α-synuclein improves diagnostic and prognostic performance of CSF tau and Aβ in Alzheimer’s disease. Acta Neuropathol 2013; 126: 683–697. 17. Olsson B, Portelius E, Cullen NC, et al. Association of Cerebrospinal Fluid Neurofilament Light Protein Levels with Cognition in Patients with Dementia, Motor Neuron Disease, and Movement Disorders. JAMA Neurol 2019; 76: 318–325. 18. Kobayashi S, Tateno M, Park TW, et al. Apolipoprotein E4 Frequencies in a Japanese Population with Alzheimer’s Disease and Dementia with Lewy Bodies. PLoS One 2011; 6: e18569. 19. Van Der Lee SJ, Van Steenoven I, Van De Beek M, et al. Genetics Contributes to Concomitant Pathology and Clinical Presentation in Dementia with Lewy Bodies. Journal of Alzheimer’s Disease 2021; 83: 269–279. 20. Sitburana O, Ondo WG. Brain magnetic resonance imaging (MRI) in parkinsonian disorders. Parkinsonism and Related Disorders 2009; 15: 165–174. 21. Murray AD. Imaging approaches for dementia. American Journal of Neuroradiology 2012; 33: 1836–1844. 22. Seki M, Seppi K, Mueller C, et al. Diagnostic Potential of Multimodal MRI Markers in Atypical Parkinsonian Disorders. J Parkinsons Dis 2019; 9: 681–691. 23. Baldacci F, Mazzucchi S, Della Vecchia A, et al. The path to biomarker-based diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Review of Molecular Diagnostics 2020; 20: 421–441. 24. Parmera JB, Coutinho AM, Aranha MR, et al. FDG-PET Patterns Predict Amyloid Deposition and Clinical Profile in Corticobasal Syndrome. Movement Disorders 2021; 36: 651–661. 25. Meyer PT, Frings L, Rücker G, et al. 18F-FDG PET in Parkinsonism: Differential diagnosis and evaluation of cognitive impairment. Journal of Nuclear Medicine 2017; 58: 1888–1898. 26. Smailagic N, Vacante M, Hyde C, et al. 18 F-FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database of Systematic Reviews; 2015. Epub ahead of print 28 January 2015. DOI: 10.1002/14651858.CD010632.pub2. 27. Califf RM. Biomarker definitions and their applications. Exp Biol Med 2018; 243: 213–221. 28. Besson JAO, Mutch WJ, Smith FW, et al. The Relationship between Parkinson’s Disease and Dementia: A study using Proton NMR Imaging Parameters. British Journal of Psychiatry 1985; 147: 380–382. 29. Bondareff W. Quantitative Computed Tomography in Senile Dementia. Arch Gen Psychiatry 1981; 38: 1365. 30. Živanović M, Trenkić AA, Milošević V, et al. The role of magnetic resonance imaging in the diagnosis and prognosis of dementia. Biomolecules and Biomedicine 2023; 23: 209–224. 31. Li K, Wang Z. lncRNA NEAT1: Key player in neurodegenerative diseases. Ageing Res Rev 2023; 86: 101878. 32. Heemels M-T. Neurodegenerative diseases. Nature 2016; 539: 179–179. 33. Boccardi M, Handels R, Gold M, et al. Clinical research in dementia: A perspective on implementing innovation. Alzheimer’s and Dementia 2022; 18: 2352–2367. 34. Eraña H. The Prion 2018 round tables (II): Aβ, tau, α-synuclein… are they prions, prion-like proteins, or what? Prion 2019; 13: 41–45. 35. Holmes WM, Klaips CL, Serio TR. Defining the limits: Protein aggregation and toxicity in vivo. Critical Reviews in Biochemistry and Molecular Biology 2014; 49: 294–303. 36. Mudher A, Colin M, Dujardin S, et al. What is the evidence that tau pathology spreads through prion-like propagation? Acta neuropathologica communications 2017; 5: 99. 37. Wareham LK, Liddelow SA, Temple S, et al. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegener 2022; 17: 23. 38. Onohuean H, Akiyode AO, Akiyode O, et al. Epidemiology of neurodegenerative diseases in the East African region: A meta-analysis. Front Neurol; 13. Epub ahead of print 17 November 2022. DOI: 10.3389/fneur.2022.1024004. 39. Gaugler J, James B, Johnson T, et al. 2016 Alzheimer’s disease facts and figures. Alzheimer’s and Dementia 2016; 12: 459–509. 40. Feigin VL, Vos T, Alahdab F, et al. Burden of Neurological Disorders across the US from 1990-2017: A Global Burden of Disease Study. JAMA Neurol 2021; 78: 165–176. 41. Al-Chalabi A, Hardiman O, Kiernan MC, et al. Amyotrophic lateral sclerosis: moving towards a new classification system. The Lancet Neurology 2016; 15: 1182–1194. 42. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Movement Disorders 2015; 30: 1591–1601. 43. Boeve BF. Behavioral Variant Frontotemporal Dementia. CONTINUUM: Lifelong Learning in Neurology 2022; 28: 702–725. 44. Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76: 1006–1014. 45. Logroscino G, Piccininni M, Graff C, et al. Incidence of Syndromes Associated With Frontotemporal Lobar Degeneration in 9 European Countries. JAMA Neurol 2023; 80: 279–286. 46. Wenning GK, Stankovic I, Vignatelli L, et al. The Movement Disorder Society Criteria for the Diagnosis of Multiple System Atrophy. Movement Disorders 2022; 37: 1131–1148. 47. Höglinger GU, Respondek G, Stamelou M, et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Movement Disorders 2017; 32: 853–864. 48. Yu F, Barron DS, Tantiwongkosi B, et al. Patterns of gray matter atrophy in atypical parkinsonism syndromes: A VBM meta-analysis. Brain Behav 2015; 5: 1–10. 49. McAleese KE, Walker L, Erskine D, et al. TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathology 2017; 27: 472–479. 50. Caminiti SP, Ballarini T, Sala A, et al. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. Neuroimage Clin 2018; 18: 167–177. 51. Greene P. Progressive Supranuclear Palsy, Corticobasal Degeneration, and Multiple System Atrophy. CONTINUUM: Lifelong Learning in Neurology 2019; 25: 919–935. 52. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Movement Disorders 2015; 30: 1591–1601. 53. Emre M, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Movement Disorders 2007; 22: 1689–1707. 54. Walker L, Stefanis L, Attems J. Clinical and neuropathological differences between Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies – current issues and future directions. Journal of Neurochemistry 2019; 150: 467–474. 55. Kim JR. Oligomerization by co-assembly of β-amyloid and α-synuclein. Front Mol Biosci; 10. Epub ahead of print 20 March 2023. DOI: 10.3389/fmolb.2023.1153839. 56. Walker L, McAleese KE, Thomas AJ, et al. Neuropathologically mixed Alzheimer’s and Lewy body disease: burden of pathological protein aggregates differs between clinical phenotypes. Acta Neuropathol 2015; 129: 729–748. 57. Jacobson SA, Morshed T, Dugger BN, et al. Plaques and tangles as well as Lewy-type alpha synucleinopathy are associated with formed visual hallucinations. Parkinsonism Relat Disord 2014; 20: 1009–1014. 58. Henderson MX, Sengupta M, Trojanowski JQ, et al. Alzheimer’s disease tau is a prominent pathology in LRRK2 Parkinson’s disease. Acta Neuropathol Commun 2019; 7: 183. 59. Cali CP, Patino M, Tai YK, et al. C9orf72 intermediate repeats are associated with corticobasal degeneration, increased C9orf72 expression and disruption of autophagy. Acta Neuropathol 2019; 138: 795–811. 60. Giannini LAA, Xie SX, McMillan CT, et al. Divergent patterns of TDP-43 and tau pathologies in primary progressive aphasia. Ann Neurol 2019; 85: 630–643. 61. Grossman M, Irwin DJ. Primary Progressive Aphasia and Stroke Aphasia. CONTINUUM: Lifelong Learning in Neurology 2018; 24: 745–767. 62. Domínguez-Fernández C, Egiguren-Ortiz J, Razquin J, et al. Review of Technological Challenges in Personalised Medicine and Early Diagnosis of Neurodegenerative Disorders. Int J Mol Sci 2023; 24: 3321. 63. Downer B, Garcia MA, Raji M, et al. Cohort Differences in Cognitive Impairment and Cognitive Decline Among Mexican-Americans Aged 75 Years or Older. Am J Epidemiol 2019; 188: 119–129. 64. Satizabal CL, Beiser AS, Chouraki V, et al. Incidence of Dementia over Three Decades in the Framingham Heart Study. New England Journal of Medicine 2016; 374: 523–532. 65. Garrett SL, McDaniel D, Obideen M, et al. Racial Disparity in Cerebrospinal Fluid Amyloid and Tau Biomarkers and Associated Cutoffs for Mild Cognitive Impairment. JAMA Netw Open 2019; 2: e1917363. 66. Xiong C, Luo J, Coble D, et al. Complex interactions underlie racial disparity in the risk of developing Alzheimer’s disease dementia. Alzheimer’s and Dementia 2020; 16: 589–597. 67. Li Z, Shue F, Zhao N, et al. APOE2: protective mechanism and therapeutic implications for Alzheimer’s disease. Mol Neurodegener 2020; 15: 63. 68. Xiong M, Jiang H, Serrano JR, et al. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. Sci Transl Med; 13. Epub ahead of print 17 February 2021. DOI: 10.1126/scitranslmed.abd7522. 69. Jayadev S. Genetics of Alzheimer Disease. CONTINUUM: Lifelong Learning in Neurology 2022; 28: 852–871. 70. Desikan RS, Fan CC, Wang Y, et al. Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Med 2017; 14: e1002258. 71. Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genetics in Medicine 2016; 18: 421–430. 72. Yu JT, Xu W, Tan CC, et al. Evidence-based prevention of Alzheimer’s disease: Systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. Journal of Neurology, Neurosurgery and Psychiatry 2020; 91: 1201–1209. 73. Hörder H, Johansson L, Guo X, et al. Midlife cardiovascular fitness and dementia. Neurology 2018; 90: e1298–e1305. 74. Ma F, Wu T, Zhao J, et al. Folic acid supplementation improves cognitive function by reducing the levels of peripheral inflammatory cytokines in elderly Chinese subjects with MCI. Sci Rep 2016; 6: 37486. 75. Ju Y-ES, Ooms SJ, Sutphen C, et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain 2017; 140: 2104–2111. 76. Ju YES, Zangrilli MA, Finn MB, et al. Obstructive sleep apnea treatment, slow wave activity, and amyloid-β. Ann Neurol 2019; 85: 291–295. 77. Kwok MK, Schooling CM. Herpes simplex virus and Alzheimer’s disease: a Mendelian randomization study. Neurobiol Aging 2021; 99: 101.e11-101.e13. 78. Schneider JA. Neuropathology of Dementia Disorders. CONTINUUM: Lifelong Learning in Neurology 2022; 28: 834–851. 79. Wilkins HM, Swerdlow RH. Amyloid precursor protein processing and bioenergetics. Brain Research Bulletin 2017; 133: 71–79. 80. Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s and Dementia 2012; 8: 1–13. 81. Bennett DA, Wilson RS, Boyle PA, et al. Relation of neuropathology to cognition in persons without cognitive impairment. Ann Neurol 2012; 72: 599–609. 82. Sperling RA, Donohue MC, Raman R, et al. Association of Factors with Elevated Amyloid Burden in Clinically Normal Older Individuals. JAMA Neurol 2020; 77: 735–745. 83. Wilson RS, Segawa E, Boyle PA, et al. The natural history of cognitive decline in Alzheimer’s disease. Psychol Aging 2012; 27: 1008–1017. 84. Panza F, Lozupone M, Logroscino G, et al. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nature Reviews Neurology 2019; 15: 73–88. 85. Tolkovsky AM, Spillantini MG. Tau aggregation and its relation to selected forms of neuronal cell death. Essays in Biochemistry 2021; 65: 847–857. 86. Chung DC, Roemer S, Petrucelli L, et al. Cellular and pathological heterogeneity of primary tauopathies. Mol Neurodegener 2021; 16: 57. 87. Zafeiris D, Rutella S, Ball GR. An Artificial Neural Network Integrated Pipeline for Biomarker Discovery Using Alzheimer’s Disease as a Case Study. Computational and Structural Biotechnology Journal 2018; 16: 77–87. 88. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239–259. 89. Braak H, Alafuzoff I, Arzberger T, et al. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006; 112: 389–404. 90. Murray ME, Graff-Radford NR, Ross OA, et al. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: A retrospective study. Lancet Neurol 2011; 10: 785–796. 91. Thal DR, Rüb U, Orantes M, et al. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 2002; 58: 1791–1800. 92. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia 2011; 7: 263–269. 93. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia 2011; 7: 270–279. 94. Kondo D, Ota K, Kasanuki K, et al. Characteristics of mild cognitive impairment tending to convert into Alzheimer’s disease or dementia with Lewy bodies: A follow-up study in a memory clinic. J Neurol Sci 2016; 369: 102–108. 95. Brodaty H, Seeher K, Gibson L. Dementia time to death: A systematic literature review on survival time and years of life lost in people with dementia. International Psychogeriatrics 2012; 24: 1034–1045. 96. Leng K, Li E, Eser R, et al. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat Neurosci 2021; 24: 276–287. 97. Vos SJB, Verhey F, Frölich L, et al. Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain 2015; 138: 1327–1338. 98. Lombardi G, Crescioli G, Cavedo E, et al. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment. Cochrane Database of Systematic Reviews; 2020. Epub ahead of print 2 March 2020. DOI: 10.1002/14651858.CD009628.pub2. 99. Burke DM, Mackay DG. Memory, language, and ageing. Philos Trans R Soc Lond B Biol Sci 1997; 352: 1845–1856. 100. Hiller AJ, Ishii M. Disorders of Body Weight, Sleep and Circadian Rhythm as Manifestations of Hypothalamic Dysfunction in Alzheimer’s Disease. Front Cell Neurosci; 12. Epub ahead of print 5 December 2018. DOI: 10.3389/fncel.2018.00471. 101. Scarmeas N, Brandt J, Albert M, et al. Delusions and Hallucinations Are Associated With Worse Outcome in Alzheimer Disease. Arch Neurol; 62. Epub ahead of print 1 October 2005. DOI: 10.1001/archneur.62.10.1601. 102. Scarmeas N, Hadjigeorgiou GM, Papadimitriou A, et al. Motor signs during the course of Alzheimer disease. Neurology 2004; 63: 975–982. 103. Scarmeas N, Honig LS, Choi H, et al. Seizures in Alzheimer Disease. Arch Neurol; 66. Epub ahead of print 1 August 2009. DOI: 10.1001/archneurol.2009.130. 104. Binetti G, Magni E, Padovani A, et al. Neuropsychological Heterogeneity in Mild Alzheimer’s Disease. Dement Geriatr Cogn Disord 1993; 4: 321–326. 105. Koss E, Edland S, Fillenbaum G, et al. Clinical and neuropsychological differences between patients with earlier and later onset of Alzheimer’s disease. Neurology 1996; 46: 136–141. 106. Filley CM, Kelly J, Heaton RK. Neuropsychologic Features of Early- and Late-Onset Alzheimer’s Disease. Arch Neurol 1986; 43: 574–576. 107. Fujimori M, Imamura T, Yamashita H, et al. Age at Onset and Visuocognitive Disturbances in Alzheimer Disease. Alzheimer Dis Assoc Disord 1998; 12: 163–166. 108. Whitwell JL, Dickson DW, Murray ME, et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: A case-control study. Lancet Neurol 2012; 11: 868–877. 109. Cavedo E, Pievani M, Boccardi M, et al. Medial temporal atrophy in early and late-onset alzheimer’s disease. Neurobiol Aging 2014; 35: 2004–2012. 110. Schott JM, Crutch SJ. Posterior Cortical Atrophy. CONTINUUM: Lifelong Learning in Neurology 2019; 25: 52–75. 111. Schott JM, Lehmann M, Primativo S, et al. Consensus classification of posterior cortical atrophy. Alzheimer’s and Dementia 2017; 13: 870–884. 112. Snowden JS, Stopford CL, Julien CL, et al. Cognitive phenotypes in Alzheimer’s disease and genetic risk. Cortex 2007; 43: 835–845. 113. Bergeron D, Gorno-Tempini ML, Rabinovici GD, et al. Prevalence of amyloid-β pathology in distinct variants of primary progressive aphasia. Ann Neurol 2018; 84: 729–740. 114. Ramanan S, Roquet D, Goldberg ZL, et al. Establishing two principal dimensions of cognitive variation in logopenic progressive aphasia. Brain Commun; 2. Epub ahead of print 2020. DOI: DOI: 10.1093/braincomms/fcaa125. 115. Perry DC, Brown JA, Possin KL, et al. Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain 2017; 140: 3329–3345. 116. Townley RA, Graff-Radford J, Mantyh WG, et al. Progressive dysexecutive syndrome due to Alzheimer’s disease: a description of 55 cases and comparison to other phenotypes. Brain Commun; 2. Epub ahead of print 1 January 2020. DOI: 10.1093/braincomms/fcaa068. 117. Ossenkoppele R, Pijnenburg YAL, Perry DC, et al. The behavioural/dysexecutive variant of Alzheimer’s disease: Clinical, neuroimaging and pathological features. Brain 2015; 138: 2732–2749. 118. Di Stefano F, Kas A, Habert MO, et al. The phenotypical core of Alzheimer’s disease-related and nonrelated variants of the corticobasal syndrome: A systematic clinical, neuropsychological, imaging, and biomarker study. Alzheimer’s and Dementia 2016; 12: 786–795. 119. Hassan A, Whitwell JL, Josephs KA. The corticobasal syndrome-Alzheimer’s disease conundrum. Expert Review of Neurotherapeutics 2011; 11: 1569–1578. 120. Lee SE, Rabinovici GD, Mayo MC, et al. Clinicopathological correlations in corticobasal degeneration. Annals of Neurology 2011; 70: 327–340. 121. Day GS. Reversible Dementias. CONTINUUM: Lifelong Learning in Neurology 2019; 25: 234–253. 122. Knopman DS, DeKosky ST, Cummings JL, et al. Practice parameter: Diagnosis of dementia (an evidence-based review). Neurology 2001; 56: 1143–1153. 123. Weintraub S. Neuropsychological Assessment in Dementia Diagnosis. CONTINUUM: Lifelong Learning in Neurology 2022; 28: 781–799. 124. Snowden JS, Thompson JC, Stopford CL, et al. The clinical diagnosis of early-onset dementias: Diagnostic accuracy and clinicopathological relationships. Brain 2011; 134: 2478–2492. 125. Breton A, Casey D, Arnaoutoglou NA. Cognitive tests for the detection of mild cognitive impairment (MCI), the prodromal stage of dementia: Meta-analysis of diagnostic accuracy studies. International Journal of Geriatric Psychiatry 2019; 34: 233–242. 126. Jia X, Wang Z, Huang F, et al. A comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study. BMC Psychiatry 2021; 21: 485. 127. Scarpina F, Paschino C, Priano L, et al. Performance at the clock drawing test of individuals affected by Parkinson’s disease and healthy subjects: a retrospective study. Neurological Sciences 2020; 41: 843–849. 128. Qiang W, Yau W-M, Lu J-X, et al. Structural Variation in Amyloid-β Fibrils from Alzheimer’s Disease Clinical Subtypes HHS Public Access. Nature 2017; 541: 217–221. 129. Dujardin S, Commins C, Lathuiliere A, et al. Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat Med 2020; 26: 1256–1263. 130. Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s and Dementia 2018; 14: 535–562. 131. Sarazin M, Lagarde J, Bottlaender M. Distinct tau PET imaging patterns in typical and atypical Alzheimer’s disease. Brain 2016; 139: 1321–1324. 132. Dumas A, Destrebecq F, Esposito G, et al. Rethinking the detection and diagnosis of Alzheimer’s disease: Outcomes of a European Brain Council project. Aging Brain 2023; 4: 100093. 133. McMahon PM, Araki SS, Sandberg EA, et al. Cost-effectiveness of PET in the diagnosis of Alzheimer disease. Radiology 2003; 228: 515–522. 134. Lee Y-S, Youn H, Jeong H-G, et al. Cost-effectiveness of using amyloid positron emission tomography in individuals with mild cognitive impairment. Cost Effectiveness and Resource Allocation 2021; 19: 50. 135. Ross EL, Weinberg MS, Arnold SE. Cost-effectiveness of Aducanumab and Donanemab for Early Alzheimer Disease in the US. JAMA Neurol 2022; 79: 478. 136. Schindler SE. Fluid Biomarkers in Dementia Diagnosis. CONTINUUM: Lifelong Learning in Neurology 2022; 28: 822–833. 137. Bousiges O, Blanc F. Biomarkers of Dementia with Lewy Bodies: Differential Diagnostic with Alzheimer’s Disease. Int J Mol Sci 2022; 23: 6371. 138. Thijssen EH, La Joie R, Strom A, et al. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study. Lancet Neurol 2021; 20: 739–752. 139. Michaud TL, Kane RL, McCarten JR, et al. Using Cerebrospinal Fluid Biomarker Testing to Target Treatment to Patients with Mild Cognitive Impairment: A Cost-Effectiveness Analysis. Pharmacoecon Open 2018; 2: 309–323. 140. Contador J, Vargas-Martínez AM, Sánchez-Valle R, et al. Cost-effectiveness of Alzheimer’s disease CSF biomarkers and amyloid-PET in early-onset cognitive impairment diagnosis. Eur Arch Psychiatry Clin Neurosci 2023; 273: 243–252. 141. Lee SAW, Sposato LA, Hachinski V, et al. Cost-effectiveness of cerebrospinal biomarkers for the diagnosis of Alzheimer’s disease. Alzheimers Res Ther 2017; 9: 18. 142. Simonsen AH, Herukka SK, Andreasen N, et al. Recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia. Alzheimer’s and Dementia 2017; 13: 274–284. 143. Park S, Kim YS. Bias-generating factors in biofluid amyloid-β measurements for Alzheimer’s disease diagnosis. Biomedical Engineering Letters 2021; 11: 287–295. 144. Buccellato FR, D’Anca M, Tartaglia GM, et al. Treatment of Alzheimer’s Disease: Beyond Symptomatic Therapies. Int J Mol Sci 2023; 24: 13900. 145. Leonpacher AK, Peters ME, Drye LT, et al. Effects of Citalopram on Neuropsychiatric Symptoms in Alzheimer’s Dementia: Evidence From the CitAD Study. American Journal of Psychiatry 2016; 173: 473–480. 146. Cummings JL, Devanand DP, Stahl SM. Dementia-related psychosis and the potential role for pimavanserin. CNS Spectr 2022; 27: 7–15. 147. Huang L-K, Kuan Y-C, Lin H-W, et al. Clinical trials of new drugs for Alzheimer disease: a 2020–2023 update. J Biomed Sci 2023; 30: 83. 148. Burroughs AW, Krain LP. What Might Aducanumab Teach Us About Clinicians’ Judgment About Whether to Recommend Emerging Alzheimer’s Interventions? 2023. 149. Barker WW, Luis CA, Kashuba A, et al. Relative Frequencies of Alzheimer Disease, Lewy Body, Vascular and Frontotemporal Dementia, and Hippocampal Sclerosis in the State of Florida Brain Bank. 2002. 150. Emre M, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Movement Disorders 2007; 22: 1689–1707. 151. McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies. Neurology 2017; 89: 88–100. 152. McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: Third report of the DLB consortium. Neurology 2005; 65: 1863–1872. 153. Litvan I, Aarsland D, Adler CH, et al. MDS task force on mild cognitive impairment in Parkinson’s disease: Critical review of PD-MCI. Movement Disorders 2011; 26: 1814–1824. 154. McKeith IG, Ferman TJ, Thomas AJ, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology 2020; 94: 743–755. 155. Giguère N, Burke Nanni S, Trudeau L-E. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson’s Disease. Front Neurol; 9. Epub ahead of print 19 June 2018. DOI: 10.3389/fneur.2018.00455. 156. Weil RS, Costantini AA, Schrag AE. Mild Cognitive Impairment in Parkinson’s Disease—What Is It? Curr Neurol Neurosci Rep 2018; 18: 17. 157. Van Den Berge N, Ulusoy A. Animal models of brain-first and body-first Parkinson’s disease. Neurobiol Dis 2022; 163: 105599. 158. Boeve BF, Dickson DW, Duda JE, et al. Arguing against the proposed definition changes of PD. Movement Disorders 2016; 31: 1619–1622. 159. Hirtz D, Thurman DJ, Gwinn-Hardy K, et al. How common are the ‘common’ neurologic disorders? Neurology 2007; 68: 326–337. 160. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5: 525–535. 161. Elbaz A, Bower JH, Maraganore DM, et al. Risk tables for parkinsonism and Parkinson’s disease. J Clin Epidemiol 2002; 55: 25–31. 162. Schrag A, Bohlken J, Dammertz L, et al. Widening the Spectrum of Risk Factors, Comorbidities, and Prodromal Features of Parkinson Disease. JAMA Neurol 2023; 80: 161–171. 163. Zesiewicz TA. Parkinson Disease. CONTINUUM: Lifelong Learning in Neurology 2019; 25: 896–918. 164. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79: 368–376. 165. Morato Torres CA, Wassouf Z, Zafar F, et al. The Role of Alpha-Synuclein and Other Parkinson’s Genes in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21: 5724. 166. Santangelo G, Vitale C, Picillo M, et al. Mild Cognitive Impairment in newly diagnosed Parkinson’s disease: A longitudinal prospective study. Parkinsonism Relat Disord 2015; 21: 1219–1226. 167. Goldman JG, Holden SK. Cognitive Syndromes Associated With Movement Disorders. CONTINUUM: Lifelong Learning in Neurology 2022; 28: 726–749. 168. Weintraub D, Irwin D. Diagnosis and Treatment of Cognitive and Neuropsychiatric Symptoms in Parkinson Disease and Dementia With Lewy Bodies. CONTINUUM: Lifelong Learning in Neurology 2022; 28: 1314–1332. 169. Pedersen KF, Larsen JP, Tysnes O-B, et al. Prognosis of Mild Cognitive Impairment in Early Parkinson Disease. JAMA Neurol 2013; 70: 580. 170. Aarsland D, Creese B, Politis M, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol 2017; 13: 217–231. 171. Hely MA, Morris JGL, Reid WGJ, et al. Sydney multicenter study of Parkinson’s disease: Non‐ <scp>L</scp> ‐dopa–responsive problems dominate at 15 years. Movement Disorders 2005; 20: 190–199. 172. Hely MA, Reid WGJ, Adena MA, et al. The Sydney multicenter study of Parkinson’s disease: The inevitability of dementia at 20 years. Movement Disorders 2008; 23: 837–844. 173. Bäckström D, Granåsen G, Domellöf ME, et al. Early predictors of mortality in parkinsonism and Parkinson disease. Neurology 2018; 91: e2045–e2056. 174. Pigott K, Rick J, Xie SX, et al. Longitudinal study of normal cognition in Parkinson disease. Neurology 2015; 85: 1276–1282. 175. Xu Y, Yang J, Shang H. Meta-analysis of risk factors for Parkinson’s disease dementia. Transl Neurodegener 2016; 5: 11. 176. Kaminska M, Mery VP, Lafontaine A-L, et al. Change in Cognition and Other Non-Motor Symptoms With Obstructive Sleep Apnea Treatment in Parkinson Disease. Journal of Clinical Sleep Medicine 2018; 14: 819–828. 177. Centi J, Freeman R, Gibbons CH, et al. Effects of orthostatic hypotension on cognition in Parkinson disease. Neurology 2017; 88: 17–24. 178. Knox MG, Adler CH, Shill HA, et al. Neuropathological Findings in Parkinson’s Disease With Mild Cognitive Impairment. Movement Disorders 2020; 35: 845–850. 179. Neumann J, Bras J, Deas E, et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 2009; 132: 1783–1794. 180. Setó-Salvia N, Clarimón J, Pagonabarraga J, et al. Dementia Risk in Parkinson Disease. Arch Neurol; 68. Epub ahead of print 1 March 2011. DOI: 10.1001/archneurol.2011.17. 181. Chia R, Sabir MS, Bandres-Ciga S, et al. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet 2021; 53: 294–303. 182. Halliday G, Lees A, Stern M. Milestones in Parkinson’s disease-Clinical and pathologic features. Movement Disorders 2011; 26: 1015–1021. 183. Smith C, Malek N, Grosset K, et al. Neuropathology of dementia in patients with Parkinson’s disease: A systematic review of autopsy studies. Journal of Neurology, Neurosurgery and Psychiatry 2019; 90: 1234–1243. 184. Braak H, Tredici K Del, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24: 197–211. 185. Koeglsperger T, Rumpf S-L, Schließer P, et al. Neuropathology of incidental Lewy body & prodromal Parkinson’s disease. Mol Neurodegener 2023; 18: 32. 186. Braak H, Rüb U, Jansen Steur ENH, et al. Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 2005; 64: 1404–1410. 187. Del Tredici K, Rüb U, de Vos RAI, et al. Where Does Parkinson Disease Pathology Begin in the Brain? J Neuropathol Exp Neurol 2002; 61: 413–426. 188. Braak H, Ghebremedhin E, Rüb U, et al. Stages in the development of Parkinson’s disease-related pathology. Cell and Tissue Research 2004; 318: 121–134. 189. Sakae N, Santos OA, Pedraza O, et al. Clinical and pathologic features of cognitive-predominant corticobasal degeneration. Neurology 2020; 95: 35–45. 190. Dickson DW, Braak H, Duda JE, et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. The Lancet Neurology 2009; 8: 1150–1157. 191. Galtier I, Nieto A, Lorenzo JN, et al. Mild cognitive impairment in Parkinsons disease: Diagnosis and progression to dementia. J Clin Exp Neuropsychol 2016; 38: 40–50. 192. Hobson P, Meara J. Risk and incidence of dementia in a cohort of older subjects with Parkinson’s disease in the United Kingdom. Movement Disorders 2004; 19: 1043–1049. 193. Meles SK, Oertel WH, Leenders KL. Circuit imaging biomarkers in preclinical and prodromal Parkinson’s disease. Molecular Medicine 2021; 27: 111. 194. Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Movement Disorders 2008; 23: 2129–2170. 195. Pourzinal D, Yang J, Lawson RA, et al. Systematic review of data-driven cognitive subtypes in Parkinson disease. European Journal of Neurology 2022; 29: 3395–3417. 196. Li L, Ji B, Zhao T, et al. The structural changes of gray matter in Parkinson disease patients with mild cognitive impairments. PLoS One 2022; 17: e0269787. 197. Huang M, Yu H, Cai X, et al. A comparative study of posterior cingulate metabolism in patients with mild cognitive impairment due to Parkinson’s disease or Alzheimer’s disease. Sci Rep 2023; 13: 14241. 198. Pellecchia MT, Picillo M, Santangelo G, et al. Cognitive performances and DAT imaging in early Parkinson’s disease with mild cognitive impairment: A preliminary study. Acta Neurol Scand 2015; 131: 275–281. 199. Paolini Paoletti F, Gaetani L, Bellomo G, et al. CSF neurochemical profile and cognitive changes in Parkinson’s disease with mild cognitive impairment. NPJ Parkinsons Dis 2023; 9: 68. 200. Li Q, Li Z, Han X, et al. A Panel of Plasma Biomarkers for Differential Diagnosis of Parkinsonian Syndromes. Front Neurosci; 16. Epub ahead of print 17 February 2022. DOI: 10.3389/fnins.2022.805953. 201. Weinshel S, Irwin DJ, Zhang P, et al. Appropriateness of Applying Cerebrospinal Fluid Biomarker Cutoffs from Alzheimer’s Disease to Parkinson’s Disease. J Parkinsons Dis 2022; 12: 1155–1167. 202. Mollinari C, De Dominicis C, Lupacchini L, et al. Detection of Pathological Markers of Neurodegenerative Diseases following Microfluidic Direct Conversion of Patient Fibroblasts into Neurons. Int J Mol Sci 2022; 23: 2147. 203. Colom-Cadena M, Grau-Rivera O, Planellas L, et al. Regional Overlap of Pathologies in Lewy Body Disorders. J Neuropathol Exp Neurol. Epub ahead of print 3 March 2017. DOI: 10.1093/jnen/nlx002. 204. Emre M, Aarsland D, Albanese A, et al. Rivastigmine for Dementia Associated with Parkinson’s Disease. New England Journal of Medicine 2004; 351: 2509–2518. 205. Sawada H, Oeda T, Kohsaka M, et al. Early-start vs delayed-start donepezil against cognitive decline in Parkinson disease: a randomized clinical trial. Expert Opin Pharmacother 2021; 22: 363–371. 206. da Silva FC, Iop R da R, de Oliveira LC, et al. Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: A systematic review of randomized controlled trials of the last 10 years. PLoS One 2018; 13: e0193113. 207. Sanchez-Luengos I, Balboa-Bandeira Y, Lucas-Jiménez O, et al. Effectiveness of Cognitive Rehabilitation in Parkinson’s Disease: A Systematic Review and Meta-Analysis. J Pers Med 2021; 11: 429. 208. Rosqvist K, Odin P. Compliance with National and International Guidelines in the Treatment of Nonmotor Symptoms in Late-Stage Parkinson’s Disease. Parkinsons Dis 2023; 2023: 1–11. 209. Sawada H, Oeda T, Kohsaka M, et al. Early use of donepezil against psychosis and cognitive decline in Parkinson’s disease: a randomised controlled trial for 2 years. J Neurol Neurosurg Psychiatry 2018; 89: 1332–1340. 210. Seppi K, Ray Chaudhuri K, Coelho M, et al. Update on treatments for nonmotor symptoms of Parkinson’s disease—an evidence‐based medicine review. Movement Disorders 2019; 34: 180–198. 211. Tariot PN, Cummings JL, Soto-Martin ME, et al. Trial of Pimavanserin in Dementia-Related Psychosis. New England Journal of Medicine 2021; 385: 309–319. 212. Vann Jones SA, O’Brien JT. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med 2014; 44: 673–683. 213. Lippa CF, Duda JE, Grossman M, et al. DLB and PDD boundary issues: Diagnosis, treatment, molecular pathology, and biomarkers. Neurology 2007; 68: 812–819. 214. Zaccai J, McCracken C, Brayne C. A systematic review of prevalence and incidence studies of dementia with Lewy bodies. Age Ageing 2005; 34: 561–566. 215. Savica R, Grossardt BR, Bower JH, et al. Incidence of Dementia With Lewy Bodies and Parkinson Disease Dementia. JAMA Neurol 2013; 70: 1396. 216. Boot BP, Orr CF, Ahlskog JE, et al. Risk factors for dementia with Lewy bodies: A case-control study. Neurology 2013; 81: 833–840. 217. Chia R, Sabir MS, Bandres-Ciga S, et al. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet 2021; 53: 294–303. 218. Ferman TJ, Boeve BF, Smith GE, et al. Inclusion of RBD improves the diagnostic classification of dementia with Lewy bodies. Neurology 2011; 77: 875–882. 219. Galvin JE, Duda JE, Kaufer DI, et al. Lewy body dementia: The caregiver experience of clinical care. Parkinsonism Relat Disord 2010; 16: 388–392. 220. Price A, Farooq R, Yuan J-M, et al. Mortality in dementia with Lewy bodies compared with Alzheimer’s dementia: a retrospective naturalistic cohort study. BMJ Open 2017; 7: e017504. 221. Beach TG, Adler CH, Lue LF, et al. Unified staging system for Lewy body disorders: Correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol 2009; 117: 613–634. 222. Fujishiro H, Tsuboi Y, Lin WL, et al. Co-localization of tau and α-synuclein in the olfactory bulb in Alzheimer’s disease with amygdala Lewy bodies. Acta Neuropathol 2008; 116: 17–24. 223. Jellinger KA. Neuropathological spectrum of synucleinopathies. Movement Disorders 2003; 18: 2–12. 224. Donaghy PC, McKeith IG. The clinical characteristics of dementia with Lewy bodies and a consideration of prodromal diagnosis. Alzheimers Res Ther 2014; 6: 46. 225. Ryman SG, Yutsis M, Tian L, et al. Cognition at Each Stage of Lewy Body Disease with Co-occurring Alzheimer’s Disease Pathology1. Journal of Alzheimer’s Disease 2021; 80: 1243–1256. 226. Coughlin DG, Hurtig HI, Irwin DJ. Pathological Influences on Clinical Heterogeneity in Lewy Body Diseases. Movement Disorders 2020; 35: 5–19. 227. Ferman TJ, Boeve BF, Smith GE, et al. Inclusion of RBD improves the diagnostic classification of dementia with Lewy bodies. Neurology 2011; 77: 875–882. 228. Postuma RB, Gagnon JF, Vendette M, et al. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology 2009; 72: 1296–1300. 229. McKeith IG, Ferman TJ, Thomas AJ, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology 2020; 94: 743–755. 230. Ferman TJ, Smith GE, Kantarci K, et al. Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies. Neurology 2013; 81: 2032–2038. 231. Harper L, Fumagalli GG, Barkhof F, et al. MRI visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain 2016; 139: 1211–1225. 232. Nedelska Z, Ferman TJ, Boeve BF, et al. Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiol Aging 2015; 36: 452–461. 233. McKeith I, O’Brien J, Walker Z, et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 2007; 6: 305–313. 234. Yoshita M, Arai H, Arai H, et al. Diagnostic Accuracy of 123I-Meta-Iodobenzylguanidine Myocardial Scintigraphy in Dementia with Lewy Bodies: A Multicenter Study. PLoS One 2015; 10: e0120540. 235. Tiraboschi P, Corso A, Guerra UP, et al. 123 I‐2β‐carbomethoxy‐3β‐(4‐iodophenyl)‐ N ‐(3‐fluoropropyl) nortropane single photon emission computed tomography and 123 I‐metaiodobenzylguanidine myocardial scintigraphy in differentiating dementia with lewy bodies from other dementias: A comparative study. Ann Neurol 2016; 80: 368–378. 236. Higuchi M, Tashiro M, Arai H, et al. Glucose Hypometabolism and Neuropathological Correlates in Brains of Dementia with Lewy Bodies. Exp Neurol 2000; 162: 247–256. 237. Lobotesis K, Fenwick JD, Phipps A, et al. Occipital hypoperfusion on SPECT in dementia with Lewy bodies but not AD. Neurology 2001; 56: 643–649. 238. Graff-Radford J, Murray ME, Lowe VJ, et al. Dementia with Lewy bodies: Basis of cingulate island sign. Neurology 2014; 83: 801–809. 239. Bonanni L, Thomas A, Tiraboschi P, et al. EEG comparisons in early Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease with dementia patients with a 2-year follow-up. Brain 2008; 131: 690–705. 240. Boeve BF, Silber MH, Ferman TJ, et al. Clinicopathologic correlations in 172 cases of rapid eye movement sleep behavior disorder with or without a coexisting neurologic disorder. Sleep Med 2013; 14: 754–762. 241. Miettinen T, Myllymaa K, Westeren-Punnonen S, et al. Success Rate and Technical Quality of Home Polysomnography With Self-Applicable Electrode Set in Subjects With Possible Sleep Bruxism. IEEE J Biomed Health Inform 2018; 22: 1124–1132. 242. García-Ayllón MS, Monge-Argilés JA, Monge-García V, et al. Measurement of CSF α-synuclein improves early differential diagnosis of mild cognitive impairment due to Alzheimer’s disease. J Neurochem 2019; 150: 218–230. 243. O’Mahony D, O’Sullivan D, Byrne S, et al. STOPP/START criteria for potentially inappropriate prescribing in older people: version 2. Age Ageing 2014; 44: 213–218. 244. Taylor J-P, McKeith IG, Burn DJ, et al. New evidence on the management of Lewy body dementia. Lancet Neurol 2020; 19: 157–169. 245. Howell MJ, Schenck CH. Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Disease. JAMA Neurol 2015; 72: 707. 246. Srivanitchapoom P, Pandey S, Hallett M. Drooling in Parkinson’s disease: A review. Parkinsonism Relat Disord 2014; 20: 1109–1118. 247. Inskip M, Mavros Y, Sachdev PS, et al. Exercise for Individuals with Lewy Body Dementia: A Systematic Review. PLoS One 2016; 11: e0156520. 248. Mak MK, Wong-Yu IS, Shen X, et al. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat Rev Neurol 2017; 13: 689–703. 249. Garcia‐Ptacek S, Kåreholt I, Cermakova P, et al. Causes of Death According to Death Certificates in Individuals with Dementia: A Cohort from the Swedish Dementia Registry. J Am Geriatr Soc; 64. Epub ahead of print November 2016. DOI: 10.1111/jgs.14421. 250. Bergeron C, Pollanen MS, Weyer L, et al. Unusual clinical presentations of cortical‐basal ganglionic degeneration. Ann Neurol 1996; 40: 893–900. 251. Stamelou M, Quinn NP, Bhatia KP. “Atypical” atypical parkinsonism: New genetic conditions presenting with features of progressive supranuclear palsy, corticobasal degeneration, or multiple system atrophy—A diagnostic guide. Movement Disorders 2013; 28: 1184–1199. 252. Kouri N, Ross OA, Dombroski B, et al. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat Commun 2015; 6: 7247. 253. Frey KA. Molecular Imaging of Extrapyramidal Movement Disorders With Dementia: The 4R Tauopathies. Seminars in Nuclear Medicine 2021; 51: 275–285. 254. Medina M, Avila J. Editorial: Untangling the Role of Tau in Physiology and Pathology. Front Aging Neurosci; 12. Epub ahead of print 26 May 2020. DOI: 10.3389/fnagi.2020.00146. 255. Zhang Y, Wu K-M, Yang L, et al. Tauopathies: new perspectives and challenges. Mol Neurodegener 2022; 17: 28. 256. Dickson DW, Bergeron C, Chin SS, et al. Office of Rare Diseases Neuropathologic Criteria for Corticobasal Degeneration. J Neuropathol Exp Neurol 2002; 61: 935–946. 257. Kouri N, Whitwell JL, Josephs KA, et al. Corticobasal degeneration: A pathologically distinct 4R tauopathy. Nature Reviews Neurology 2011; 7: 263–272. 258. Alexander SK, Rittman T, Xuereb JH, et al. Validation of the new consensus criteria for the diagnosis of corticobasal degeneration. J Neurol Neurosurg Psychiatry 2014; 85: 925–929. 259. Dickson DW, Bergeron C, Chin SS, et al. Office of Rare Diseases Neuropathologic Criteria for Corticobasal Degeneration. J Neuropathol Exp Neurol 2002; 61: 935–946. 260. Lee SE, Rabinovici GD, Mayo MC, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol 2011; 70: 327–340. 261. Murray R, Neumann M, Forman MS, et al. Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology 2007; 68: 1274–1283. 262. Grimes DA, Lang AE, Bergeron CB. Dementia as the most common presentation of cortical-basal ganglionic degeneration. Neurology 1999; 53: 1969–1969. 263. Kompoliti K, Goetz CG, Boeve BF, et al. Clinical Presentation and Pharmacological Therapy in Corticobasal Degeneration. Arch Neurol 1998; 55: 957. 264. Ling H, O’Sullivan SS, Holton JL, et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 2010; 133: 2045–2057. 265. Vanek Z, Jankovic J. Dystonia in corticobasal degeneration. Movement Disorders 2001; 16: 252–257. 266. Wenning GK, Litvan I, Jankovic J, et al. Natural history and survival of 14 patients with corticobasal degeneration confirmed at postmortem examination. J Neurol Neurosurg Psychiatry 1998; 64: 184–189. 267. CHEN R, ASHBY P, LANG AE. STIMULUS-SENSITIVE MYOCLONUS IN AKINETIC-RIGID SYNDROMES. Brain 1992; 115: 1875–1888. 268. Murray R, Neumann M, Forman MS, et al. Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology 2007; 68: 1274–1283. 269. Tsuchiya K, Murayama S, Mitani K, et al. Constant and severe involvement of Betz cells in corticobasal degeneration is not consistent with pyramidal signs: a clinicopathological study of ten autopsy cases. Acta Neuropathol 2005; 109: 353–366. 270. Ross AH, Elston JS, Marion M-H, et al. Review and Update of Involuntary Facial Movement Disorders Presenting in the Ophthalmological Setting. Surv Ophthalmol 2011; 56: 54–67. 271. Boeve BF, Lang AE, Litvan I. Corticobasal degeneration and its relationship to progressive supranuclear palsy and frontotemporal dementia. Ann Neurol 2003; 54: S15–S19. 272. Lee SE, Rabinovici GD, Mayo MC, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol 2011; 70: 327–340. 273. Josephs KA. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006; 129: 1385–1398. 274. Ash S, McMillan C, Gunawardena D, et al. Speech errors in progressive non-fluent aphasia. Brain Lang 2010; 113: 13–20. 275. VanVoorst WA, Greenaway MC, Boeve BF, et al. Neuropsychological findings in clinically atypical autopsy confirmed corticobasal degeneration and progressive supranuclear palsy. Parkinsonism Relat Disord 2008; 14: 376–378. 276. Burrell JR, Hodges JR, Rowe JB. Cognition in corticobasal syndrome and progressive supranuclear palsy: A review. Movement Disorders 2014; 29: 684–693. 277. Burrell JR, Hornberger M, Vucic S, et al. Apraxia and Motor Dysfunction in Corticobasal Syndrome. PLoS One 2014; 9: e92944. 278. Uchida W, Kamagata K, Andica C, et al. Fiber-specific micro- and macroscopic white matter alterations in progressive supranuclear palsy and corticobasal syndrome. NPJ Parkinsons Dis 2023; 9: 122. 279. Day GS, Lim TS, Hassenstab J, et al. Differentiating cognitive impairment due to corticobasal degeneration and Alzheimer disease. Neurology 2017; 88: 1273–1281. 280. Whitwell JL, Jack CR, Boeve BF, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology 2010; 75: 1879–1887. 281. De Oliveira LM, Barcellos I, Teive HAG, et al. Cognitive dysfunction in corticobasal degeneration. Arquivos de Neuro-Psiquiatria 2017; 75: 570–579. 282. Magdalinou NK, Golden HL, Nicholas JM, et al. Verbal adynamia in parkinsonian syndromes: behavioral correlates and neuroanatomical substrate. Neurocase 2018; 24: 204–212. 283. Pantelyat A, Dreyfuss M, Moore P, et al. Acalculia in Autopsy-Proven Corticobasal Degeneration. Neurology 2011; 76: S61–S63. 284. Kaasinen V, Gardberg M, Röyttä M, et al. Normal dopamine transporter SPECT in neuropathologically confirmed corticobasal degeneration. J Neurol 2013; 260: 1410–1411. 285. Meyer PT, Frings L, Rücker G, et al. 18 F-FDG PET in Parkinsonism: Differential Diagnosis and Evaluation of Cognitive Impairment. Journal of Nuclear Medicine 2017; 58: 1888–1898. 286. Nobili F, Arbizu J, Bouwman F, et al. European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain 18 F‐fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur J Neurol 2018; 25: 1201–1217. 287. Leuzy A, Chiotis K, Lemoine L, et al. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol Psychiatry 2019; 24: 1112–1134. 288. Grijalvo-Perez A, Litvan I. Corticobasal Degeneration. Semin Neurol 2014; 34: 160–173. 289. Radue E-W, Weigel M, Wiest R, et al. Introduction to Magnetic Resonance Imaging for Neurologists. CONTINUUM: Lifelong Learning in Neurology 2016; 22: 1379–1398. 290. Raji CA, Benzinger TLS. The Value of Neuroimaging in Dementia Diagnosis. CONTINUUM: Lifelong Learning in Neurology 2022; 28: 800–821. 291. Shiohama T, Tsujimura K. Quantitative Structural Brain Magnetic Resonance Imaging Analyses: Methodological Overview and Application to Rett Syndrome. Front Neurosci; 16. Epub ahead of print 5 April 2022. DOI: 10.3389/fnins.2022.835964. 292. Fischl B. FreeSurfer. Neuroimage 2012; 62: 774–781. 293. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences 2000; 97: 11050–11055. 294. Ashburner J, Friston KJ. Voxel-based morphometry - The methods. Neuroimage 2000; 11: 805–821. 295. Klein A, Tourville J. 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol. Front Neurosci; 6. Epub ahead of print 2012. DOI: 10.3389/fnins.2012.00171. 296. Im K, Grant PE. Sulcal pits and patterns in developing human brains. Neuroimage 2019; 185: 881–890. 297. Berman J. Diffusion MR Tractography As a Tool for Surgical Planning. Magn Reson Imaging Clin N Am 2009; 17: 205–214. 298. Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain. Magn Reson Med 1999; 42: 526–540. 299. Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 2006; 31: 1487–1505. 300. Jung BA, Weigel M. Spin echo magnetic resonance imaging. Journal of Magnetic Resonance Imaging 2013; 37: 805–817. 301. Markl M, Leupold J. Gradient echo imaging. Journal of Magnetic Resonance Imaging 2012; 35: 1274–1289. 302. De Leon MJ, George AE, Golomb J, et al. Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol Aging 1997; 18: 1–11. 303. Boeve BF, Maraganore DM, Parisi JE, et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology 1999; 53: 795–795. 304. Kaye JA, Swihart T, Howieson D, et al. Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology 1997; 48: 1297–1304. 305. Alexander AL, Lee JE, Lazar M, et al. Diffusion tensor imaging of the brain. Neurotherapeutics 2007; 4: 316–329. 306. Basser PJ, Mattiello J, Lebihan D. Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. J Magn Reson B 1994; 103: 247–254. 307. Bihan D Le. Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed 1995; 8: 375–386. 308. Norris DG. Implications of bulk motion for diffusion‐weighted imaging experiments: Effects, mechanisms, and solutions. Journal of Magnetic Resonance Imaging 2001; 13: 486–495. 309. Turner R, Le Bihan D, Maier J, et al. Echo-planar imaging of intravoxel incoherent motion. Radiology 1990; 177: 407–414. 310. Jezzard P, Barnett AS, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med 1998; 39: 801–812. 311. Jaermann T, Crelier G, Pruessmann KP, et al. SENSE‐DTI at 3 T. Magn Reson Med 2004; 51: 230–236. 312. Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B 0 field variations. Magn Reson Med 1995; 34: 65–73. 313. Jones DK, Williams SCR, Gasston D, et al. Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time. Hum Brain Mapp 2002; 15: 216–230. 314. Papadakis NG, Xing D, Huang CLH, et al. A Comparative Study of Acquisition Schemes for Diffusion Tensor Imaging Using MRI. Journal of Magnetic Resonance 1999; 137: 67–82. 315. Hasan KM, Parker DL, Alexander AL. Comparison of gradient encoding schemes for diffusion-tensor MRI. Journal of Magnetic Resonance Imaging 2001; 13: 769–780. 316. Jones DK. The Effect of Gradient Sampling Schemes on Measures Derived from Diffusion Tensor MRI: A Monte Carlo Study. Magn Reson Med 2004; 51: 807–815. 317. Song SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002; 17: 1429–1436. 318. Wu YC, Field AS, Chung MK, et al. Quantitative analysis of diffusion tensor orientation: Theoretical framework. Magn Reson Med 2004; 52: 1146–1155. 319. Basser PJ, Pajevic S. Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magn Reson Med 2000; 44: 41–50. 320. Conturo TE, Lori NF, Cull TS, et al. Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences 1999; 96: 10422–10427. 321. Conturo TE, McKinstry RC, Akbudak E, et al. Encoding of anisotropic diffusion with tetrahedral gradients: A general mathematical diffusion formalism and experimental results. Magn Reson Med 1996; 35: 399–412. 322. Lazar M, Weinstein DM, Tsuruda JS, et al. White matter tractography using diffusion tensor deflection. Hum Brain Mapp 2003; 18: 306–321. 323. Mori S, Kaufmann WE, Davatzikos C, et al. Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 2002; 47: 215–223. 324. Catani M, Howard RJ, Pajevic S, et al. Virtual in Vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 2002; 17: 77–94. 325. Frank LR. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 2002; 47: 1083–1099. 326. Fazekas F, Chawluk J, Alavi A, et al. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. American Journal of Roentgenology 1987; 149: 351–356. 327. Hughes AJ, Daniel SE, Kilford L, et al. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55: 181–184. 328. Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011; 134: 2456–2477. 329. Tomlinson CL, Stowe R, Patel S, et al. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Movement Disorders 2010; 25: 2649–2653. 330. Konstantinopoulou E, Kosmidis MH, Ioannidis P, et al. Adaptation of Addenbrooke’s Cognitive Examination-Revised for the Greek population. Eur J Neurol 2011; 18: 442–447. 331. Kosmidis MH, Vlahou CH, Panagiotaki P, et al. The verbal fluency task in the Greek population: Normative data, and clustering and switching strategies. 2004. 332. Zalonis I, Kararizou E, Triantafyllou NI, et al. A normative study of the trail making test A and B in Greek adults. Clinical Neuropsychologist 2007; 22: 842–850. 333. Stamelou M, Diehl-Schmid J, Hapfelmeier A, et al. The frontal assessment battery is not useful to discriminate progressive supranuclear palsy from frontotemporal dementias. Parkinsonism Relat Disord 2015; 21: 1264–1268. 334. Fountoulakis KN, Tsolaki M, Iacovides A, et al. The validation of the short form of the Geriatric Depression Scale (GDS) in Greece. Aging Clin Exp Res 1999; 11: 367–372. 335. Politis AM, Mayer LS, Passa M, et al. Validity and reliablity of the newly translated Hellenic Neuropsychiatric Inventory (H-NPI) applied to Greek outpatients with Alzheimer’s disease: A study of disturbing behaviors among referrals to a memory clinic. Int J Geriatr Psychiatry 2004; 19: 203–208. 336. Mandal PK, Mahajan R, Dinov ID. Structural Brain Atlases: Design, Rationale, and Applications in Normal and Pathological Cohorts. Journal of Alzheimer’s Disease 2012; 31: S169–S188. 337. Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006; 31: 968–980. 338. Parker GJM, Alexander DC. Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information. 2003, pp. 684–695. 339. Harris JM, Thompson JC, Gall C, et al. Do NIA‐AA criteria distinguish Alzheimer’s disease from frontotemporal dementia? Alzheimer’s & Dementia 2015; 11: 207–215. 340. Alexander SK, Rittman T, Xuereb JH, et al. Validation of the new consensus criteria for the diagnosis of corticobasal degeneration. J Neurol Neurosurg Psychiatry 2014; 85: 925–929. 341. Zhao L, Matloff W, Ning K, et al. Age-Related Differences in Brain Morphology and the Modifiers in Middle-Aged and Older Adults. Cerebral Cortex 2019; 29: 4169–4193. 342. Jellinger KA. The pathobiological basis of depression in Parkinson disease: challenges and outlooks. Journal of Neural Transmission 2022; 129: 1397–1418. 343. Castiglioni S, Pelati O, Zuffi M, et al. The Frontal Assessment Battery Does Not Differentiate Frontotemporal Dementia from Alzheimer’s Disease. Dement Geriatr Cogn Disord 2006; 22: 125–131. 344. Reul S, Lohmann H, Wiendl H, et al. Can cognitive assessment really discriminate early stages of Alzheimer’s and behavioural variant frontotemporal dementia at initial clinical presentation? Alzheimers Res Ther 2017; 9: 61. 345. Rittman T, Ghosh BC, McColgan P, et al. The Addenbrooke’s Cognitive Examination for the differential diagnosis and longitudinal assessment of patients with parkinsonian disorders. J Neurol Neurosurg Psychiatry 2013; 84: 544–551. 346. Nucifora PGP, Verma R, Lee S-K, et al. Diffusion-Tensor MR Imaging and Tractography: Exploring Brain Microstructure and Connectivity. Radiology 2007; 245: 367–384. 347. Budde MD, Xie M, Cross AH, et al. Axial Diffusivity Is the Primary Correlate of Axonal Injury in the Experimental Autoimmune Encephalomyelitis Spinal Cord: A Quantitative Pixelwise Analysis. The Journal of Neuroscience 2009; 29: 2805–2813. 348. Wu Z, Peng Y, Hong M, et al. Gray Matter Deterioration Pattern During Alzheimer’s Disease Progression: A Regions-of-Interest Based Surface Morphometry Study. Front Aging Neurosci; 13. Epub ahead of print 3 February 2021. DOI: 10.3389/fnagi.2021.593898. 349. Wu Y, Wu X, Wei Q, et al. Differences in Cerebral Structure Associated With Depressive Symptoms in the Elderly With Alzheimer’s Disease. Front Aging Neurosci; 12. Epub ahead of print 12 May 2020. DOI: 10.3389/fnagi.2020.00107. 350. Benejam B, Aranha MR, Videla L, et al. Neural correlates of episodic memory in adults with Down syndrome and Alzheimer’s disease. Alzheimers Res Ther 2022; 14: 123. 351. Nho K, Risacher SL, Crane PK, et al. Voxel and surface-based topography of memory and executive deficits in mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav 2012; 6: 551–567. 352. Goltermann J, Repple J, Redlich R, et al. Apolipoprotein E homozygous ε4 allele status: Effects on cortical structure and white matter integrity in a young to mid-age sample. European Neuropsychopharmacology 2021; 46: 93–104. 353. Lee J, Cho H, Jeon S, et al. Sex-Related Reserve Hypothesis in Alzheimer’s Disease: Changes in Cortical Thickness with a Five-Year Longitudinal Follow-Up. J Alzheimers Dis 2018; 65: 641–649. 354. Wu J, Zhang J, Shi J, et al. Hippocampus morphometry study on pathology-confirmed Alzheimer’s disease patients with surface multivariate morphometry statistics. In: Proceedings - International Symposium on Biomedical Imaging. IEEE Computer Society, 2018, pp. 1555–1559. 355. Dong Q, Zhang W, Wu J, et al. Applying surface-based hippocampal morphometry to study APOE-E4 allele dose effects in cognitively unimpaired subjects. Neuroimage Clin 2019; 22: 101744. 356. Wang G, Zhou W, Kong D, et al. Studying APOE ϵ4 Allele Dose Effects with a Univariate Morphometry Biomarker. Journal of Alzheimer’s Disease 2022; 85: 1233–1250. 357. An N, Fu Y, Shi J, et al. Synergistic effects of APOE and CLU may increase the risk of Alzheimer’s Disease: Acceleration of atrophy in the volumes and shapes of the hippocampus and amygdala. Journal of Alzheimer’s Disease 2021; 80: 1311–1327. 358. Shi J, Leporé N, Gutman BA, et al. Genetic influence of apolipoprotein E4 genotype on hippocampal morphometry: An N = 725 surface‐based Alzheimer’s disease neuroimaging initiative study. Hum Brain Mapp 2014; 35: 3903–3918. 359. Wu J, Dong Q, Zhang J, et al. Federated Morphometry Feature Selection for Hippocampal Morphometry Associated Beta-Amyloid and Tau Pathology. Front Neurosci; 15. Epub ahead of print 25 November 2021. DOI: 10.3389/fnins.2021.762458. 360. Chang HI, Hsu SW, Kao ZK, et al. Impact of Amyloid Pathology in Mild Cognitive Impairment Subjects: The Longitudinal Cognition and Surface Morphometry Data. Int J Mol Sci 2022; 23: 14635. 361. Li K, Qu H, Ma M, et al. Correlation Between Brain Structure Atrophy and Plasma Amyloid-β and Phosphorylated Tau in Patients With Alzheimer’s Disease and Amnestic Mild Cognitive Impairment Explored by Surface-Based Morphometry. Front Aging Neurosci; 14. Epub ahead of print 25 April 2022. DOI: 10.3389/fnagi.2022.816043. 362. Wu J, Su Y, Zhu W, et al. Improved Prediction of Amyloid-β and Tau Burden Using Hippocampal Surface Multivariate Morphometry Statistics and Sparse Coding. Journal of Alzheimer’s Disease 2023; 91: 637–651. 363. Quenon L, Dricot L, Woodard JL, et al. Prediction of Free and Cued Selective Reminding Test Performance Using Volumetric and Amyloid-Based Biomarkers of Alzheimer’s Disease. Journal of the International Neuropsychological Society 2016; 22: 991–1004. 364. Núñez C, Callén A, Lombardini F, et al. Different Cortical Gyrification Patterns in Alzheimer’s Disease and Impact on Memory Performance. Ann Neurol 2020; 88: 67–80. 365. Gómez-Sancho M, Tohka J, Gómez-Verdejo V. Comparison of feature representations in MRI-based MCI-to-AD conversion prediction. Magn Reson Imaging 2018; 50: 84–95. 366. Tsao S, Gajawelli N, Zhou J, et al. Evaluating the predictive power of multivariate tensor-based morphometry in Alzheimer’s disease progression via convex fused sparse group Lasso. In: Medical Imaging 2014: Image Processing. SPIE, 2014, p. 90342L. 367. Lu H, Chan SSM, Fung AWT, et al. Beyond a Differential Diagnosis: Cognitive and Morphometric Decoding of Information Processing Speed in Senior Adults with DSM-5 Mild Neurocognitive Disorders. Journal of Alzheimer’s Disease 2017; 58: 927–937. 368. Lee P, Ryoo H, Park J, et al. Morphological and microstructural changes of the hippocampus in early MCI: A study utilizing the alzheimer’s disease neuroimaging initiative database. Journal of Clinical Neurology (Korea) 2017; 13: 144–154. 369. Bachmann T, Schroeter ML, Chen K, et al. Longitudinal changes in surface based brain morphometry measures in amnestic mild cognitive impairment and Alzheimer’s Disease. Neuroimage Clin 2023; 38: 103371. 370. Chételat G, Fouquet M, Kalpouzos G, et al. Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry. Neuropsychologia 2008; 46: 1721–1731. 371. Coleman MM, Keith CM, Wilhelmsen K, et al. Surface-based correlates of cognition along the Alzheimer’s continuum in a memory clinic population. Front Neurol; 14. Epub ahead of print 5 September 2023. DOI: 10.3389/fneur.2023.1214083. 372. Zhu Y, Yang B, Zhou C, et al. Cortical atrophy is associated with cognitive impairment in Parkinson’s disease: a combined analysis of cortical thickness and functional connectivity. Brain Imaging Behav 2022; 16: 2586–2600. 373. Rahayel S, Postuma RB, Montplaisir J, et al. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features. Cerebral Cortex 2018; 28: 658–671. 374. Kamagata K, Zalesky A, Hatano T, et al. Gray matter abnormalities in idiopathic Parkinson’s disease: Evaluation by diffusional kurtosis imaging and neurite orientation dispersion and density imaging. Hum Brain Mapp 2017; 38: 3704–3722. 375. Lebedev A V., Beyer MK, Fritze F, et al. Cortical Changes Associated with Depression and Antidepressant Use in Alzheimer and Lewy Body Dementia: An MRI Surface-based Morphometric Study. The American Journal of Geriatric Psychiatry 2014; 22: 4-13.e1. 376. Lebedev A V., Westman E, Beyer MK, et al. Multivariate classification of patients with Alzheimer’s and dementia with Lewy bodies using high-dimensional cortical thickness measurements: an MRI surface-based morphometric study. J Neurol 2013; 260: 1104–1115. 377. Beyer MK, Larsen JP, Aarsland D. Gray matter atrophy in Parkinson disease with dementia and dementia with Lewy bodies. Neurology 2007; 69: 747–754. 378. Upadhyay N, Suppa A, Piattella MC, et al. Gray and white matter structural changes in corticobasal syndrome. Neurobiol Aging 2016; 37: 82–90. 379. Misch MR, Mitchell S, Francis PL, et al. Differentiating between visual hallucination-free dementia with Lewy bodies and corticobasal syndrome on the basis of neuropsychology and perfusion single-photon emission computed tomography. Alzheimers Res Ther 2014; 6: 71. 380. Li K-C, Luo X, Zeng Q-Z, et al. Distinct Patterns of Interhemispheric Connectivity in Patients With Early- and Late-Onset Alzheimer’s Disease. Front Aging Neurosci; 10. Epub ahead of print 6 September 2018. DOI: 10.3389/fnagi.2018.00261. 381. Qin L, Guo Z, McClure MA, et al. White matter changes from mild cognitive impairment to Alzheimer’s disease: a meta-analysis. Acta Neurol Belg 2021; 121: 1435–1447. 382. Naggara O, Oppenheim C, Rieu D, et al. Diffusion tensor imaging in early Alzheimer’s disease. Psychiatry Res Neuroimaging 2006; 146: 243–249. 383. Wang S, Rao J, Yue Y, et al. Altered Frequency-Dependent Brain Activation and White Matter Integrity Associated With Cognition in Characterizing Preclinical Alzheimer’s Disease Stages. Front Hum Neurosci; 15. Epub ahead of print 16 February 2021. DOI: 10.3389/fnhum.2021.625232. 384. Cho H, Dong WY, Young MS, et al. Abnormal integrity of corticocortical tracts in mild cognitive impairment: A diffusion tensor imaging study. J Korean Med Sci 2008; 23: 477–483. 385. Firbank MJ, Blamire AM, Teodorczuk A, et al. Diffusion tensor imaging in Alzheimer’s disease and dementia with Lewy bodies. Psychiatry Res Neuroimaging 2011; 194: 176–183. 386. Firbank MJ, Blamire AM, Krishnan MS, et al. Diffusion tensor imaging in dementia with Lewy bodies and Alzheimer’s disease. Psychiatry Res Neuroimaging 2007; 155: 135–145. 387. Kantarci K, Avula R, Senjem ML, et al. Dementia with Lewy bodies and Alzheimer disease. Neurology 2010; 74: 1814–1821. 388. Watson R, Blamire AM, Colloby SJ, et al. Characterizing dementia with Lewy bodies by means of diffusion tensor imaging. Neurology 2012; 79: 906–914. 389. Rebecca C Rada RDP. A Comparative White Matter Study with Parkinson′s disease,Parkinson′s Disease with Dementia and Alzheimer′s Disease. J Alzheimers Dis Parkinsonism; 03. Epub ahead of print 2013. DOI: 10.4172/2161-0460.1000123. 390. Erbetta A, Mandelli ML, Savoiardo M, et al. Diffusion tensor imaging shows different topographic involvement of the thalamus in progressive supranuclear palsy and corticobasal degeneration. American Journal of Neuroradiology 2009; 30: 1482–1487. 391. Choi SJ, Lim KO, Monteiro I, et al. Diffusion tensor imaging of frontal white matter microstructure in early Alzheimer’s disease: A preliminary study. J Geriatr Psychiatry Neurol 2005; 18: 12–19. 392. Jacobs HIL, Van Boxtel MPJ, Gronenschild EHBM, et al. Decreased gray matter diffusivity: A potential early Alzheimer’s disease biomarker? Alzheimer’s and Dementia 2013; 9: 93–97. 393. Thillainadesan S, Wen W, Zhuang L, et al. Changes in mild cognitive impairment and its subtypes as seen on diffusion tensor imaging. Int Psychogeriatr 2012; 24: 1483–1489. 394. Foley JM, Salat DH, Stricker NH, et al. Interactive effects of apolipoprotein E4 and diabetes risk on later myelinating white matter regions in neurologically healthy older aged adults. Am J Alzheimers Dis Other Demen 2014; 29: 222–235. 395. Ye C, Mori S, Chan P, et al. Connectome-wide network analysis of white matter connectivity in Alzheimer’s disease. Neuroimage Clin 2019; 22: 101690. 396. Delbeuck X, Van Der Linden M, Collette F. Alzheimer’s Disease as a Disconnection Syndrome? 2003. 397. Baxter LC, Limback‐Stokin M, Patten KJ, et al. Hippocampal connectivity and memory decline in cognitively intact APOE ε4 carriers. Alzheimer’s & Dementia 2023; 19: 3806–3814. 398. Lacalle-Aurioles M, Navas-Sánchez FJ, Alemán-Gómez Y, et al. The Disconnection Hypothesis in Alzheimer’s Disease Studied Through Multimodal Magnetic Resonance Imaging: Structural, Perfusion, and Diffusion Tensor Imaging. Journal of Alzheimer’s Disease 2016; 50: 1051–1064. 399. Kamali A, Flanders AE, Brody J, et al. Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Struct Funct 2014; 219: 269–281. 400. Taghvaei M, Mechanic-Hamilton DJ, Sadaghiani S, et al. Impact of white matter hyperintensities on structural connectivity and cognition in cognitively intact ADNI participants. Neurobiol Aging 2024; 135: 79–90. 401. Caravaglios G, Muscoso EG, Blandino V, et al. EEG Resting-State Functional Networks in Amnestic Mild Cognitive Impairment. Clin EEG Neurosci 2023; 54: 36–50. 402. Aksman LM, Oxtoby NP, Scelsi MA, et al. A data-driven study of Alzheimer’s disease related amyloid and tau pathology progression. Brain 2023; 146: 4935–4948. 403. Zikou AK, Kitsos G, Astrakas LG, et al. Pseudoexfoliation syndrome without glaucoma: White matter abnormalities detected by conventional MRI and diffusion tensor imaging. Eur J Radiol 2018; 99: 82–87. 404. Amlien IK, Fjell AM. Diffusion tensor imaging of white matter degeneration in Alzheimer’s disease and mild cognitive impairment. Neuroscience 2014; 276: 206–215. 405. Buée L, Bussière T, Buée-Scherrer V, et al. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 2000; 33: 95–130. 406. Lee G, Neve RL, Kosik KS. The microtubule binding domain of tau protein. Neuron 1989; 2: 1615–1624. 407. Iqbal K, Grundke‐Iqbal I. Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med 2008; 12: 38–55. 408. Roher AE, Weiss N, Kokjohn TA, et al. Increased Aβ Peptides and Reduced Cholesterol and Myelin Proteins Characterize White Matter Degeneration in Alzheimer’s Disease. Biochemistry 2002; 41: 11080–11090. 409. ENGLUND E, BRUN A. White matter changes in dementia of Alzheimer’s type: the difference in vulnerability between cell compartments. Histopathology 1990; 16: 433–439. 410. Bartzokis G. Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 2011; 32: 1341–1371. 411. Donaghy PC, Firbank M, Petrides G, et al. Diffusion imaging in dementia with Lewy bodies: Associations with amyloid burden, atrophy, vascular factors and clinical features. Parkinsonism Relat Disord 2020; 78: 109–115. 412. Sarasso E, Agosta F, Piramide N, et al. Progression of grey and white matter brain damage in Parkinson’s disease: a critical review of structural MRI literature. Journal of Neurology 2021; 268: 3144–3179. 413. Dąbrowska M, Schinwelski M, Sitek EJ, et al. The role of neuroimaging in the diagnosis of the atypical parkinsonian syndromes in clinical practice. Neurol Neurochir Pol 2015; 49: 421–431. 414. Nobili F, Festari C, Altomare D, et al. Automated assessment of FDG-PET for differential diagnosis in patients with neurodegenerative disorders. Eur J Nucl Med Mol Imaging 2018; 45: 1557–1566. 415. Robinson JL, Lee EB, Xie SX, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 2018; 141: 2181–2193. 416. Adler CH, Beach TG, Zhang N, et al. Unified Staging System for Lewy Body Disorders: Clinicopathologic Correlations and Comparison to Braak Staging. J Neuropathol Exp Neurol 2019; 78: 891–899. 417. Koga S, Parks A, Uitti RJ, et al. Profile of cognitive impairment and underlying pathology in multiple system atrophy. Movement Disorders 2017; 32: 405–413. 418. Robak LA, Jansen IE, van Rooij J, et al. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain 2017; 140: 3191–3203. 419. Respondek G, Grimm M, Piot I, et al. Validation of the Movement Disorder Society Criteria for the Diagnosis of 4‐Repeat Tauopathies. Movement Disorders 2020; 35: 171–176. 420. Reul S, Lohmann H, Wiendl H, et al. Can cognitive assessment really discriminate early stages of Alzheimer’s and behavioural variant frontotemporal dementia at initial clinical presentation? Alzheimers Res Ther 2017; 9: 61. 421. Finger EC. Frontotemporal Dementias. CONTINUUM: Lifelong Learning in Neurology 2016; 22: 464–489. 422. Coughlin D, Xie SX, Liang M, et al. Cognitive and Pathological Influences of Tau Pathology in Lewy Body Disorders. Ann Neurol 2019; 85: 259–271. 423. Coulthard EJ, Love S. A broader view of dementia: multiple co-pathologies are the norm. Brain 2018; 141: 1894–1897. 424. El-Nazer R, Adler CH, Beach TG, et al. Regional neuropathology distribution and verbal fluency impairments in Parkinson’s disease. Parkinsonism Relat Disord 2019; 65: 73–78.en
heal.abstractΣτόχοι και πεδίο εφαρμογής της μελέτης Σκοπός αυτής της αναδρομικής μελέτης παρατήρησης είναι η αξιολόγηση των δομικών αλλαγών της φαιάς και λευκής ουσίας του εγκεφάλου μεταξύ των ασθενών με νόσο του Alzheimer (AD), άνοια στη νόσο του Parkinson (PDD), άνοια με σωμάτια του Lewy (DLB) και φλοιοβασικό σύνδρομο (CBS), μέσω ανάλυσης εικόνων μαγνητικών τομογραφιών (MRI) εγκεφάλου. Αυτά τα νευροεκφυλιστικά νοσήματα μοιράζονται πολλά κοινά κλινικά χαρακτηριστικά, παρουσιάζοντας προκλήσεις κατά την κλινική διάγνωση. Μέθοδοι Συμμετέχοντες Όλοι οι ασθενείς προήλθαν από το Τμήμα Νευρολογίας του Πανεπιστημιακού Νοσοκομείου Ιωαννίνων. Τα κριτήρια ένταξης ήταν η ηλικία μεταξύ 50 και 80 ετών. Τα κριτήρια αποκλεισμού περιλάμβαναν ιστορικό μείζονος ψυχιατρικής ή νευροαναπτυξιακής διαταραχής, κατάχρησης ουσιών, ισχαιμικού ή αιμορραγικού αγγειακού εγκεφαλικού επεισοδίου, μείζονος κρανιοεγκεφαλικής κάκωσης, ενδοκράνιου χειρουργείου, όγκου, αρτηριοφλεβώδους δυσπλασίας ή άλλης ενδοκράνιας μάζας, ή αυξημένη παρουσία υπερεντάσεων λευκής ουσίας ή τεχνουργημάτων στις εικόνες MRI. Όλοι οι ασθενείς αξιολογήθηκαν διεξοδικά από δύο νευρολόγους. Οι ασθενείς διαγνώστηκαν σύμφωνα με τα τρέχοντα κλινικά κριτήρια για πιθανή διάγνωση κάθε υπό μελέτη νοσήματος. Οι ασθενείς με PDD και DLB μελετήθηκαν μαζί, ως μια ομάδα ανοιών με σωμάτια Lewy (LBD). Για όλους τους ασθενείς, τα σχετικά δημογραφικά δεδομένα, που περιλαμβάνουν την ηλικία, το φύλο, το επίπεδο εκπαίδευσης (έτη εκπαίδευσης) και κλινικούς δείκτες, όπως η διάρκεια νόσου, καταγράφηκαν για τη δομική αξιολόγηση του εγκεφάλου. Αυτοί οι δείκτες χρησιμοποιήθηκαν ως μεταβλητές στις συγκρίσεις που διεξήχθησαν μεταξύ των ομάδων. Νευροψυχολογική αξιολόγηση Όλοι οι ασθενείς και μάρτυρες υποβλήθηκαν σε εκτεταμένη νευροψυχολογική αξιολόγηση από εξειδικευμένο λογοθεραπευτή. Χορηγήθηκαν οι ακόλουθες νευροψυχολογικές συστοιχίες: η Αναθεωρημένη Γνωστική Εξέταση του Addenbrooke (ACE-R), η Συστοιχία Μετωπιαίας Εκτίμησης (FAB), η Δοκιμασία Λεκτικής Ροής (VFT), η Δοκιμασία Δημιουργίας Μονοπατιών (TMT), Α και Β μέρος, το Νευροψυχιατρικό Ερωτηματολόγιο (NPI) και η Γηριατρική Κλίμακα Κατάθλιψης (GDS). Στατιστική ανάλυση Οι συνεχείς δημογραφικές και κλινικές μεταβλητές αξιολογήθηκαν ως προς την κανονικότητα με τη τεστ Shapiro-Wilk και στη συνέχεια αναλύθηκαν με ανάλυση διακύμανσης κατά ένα παράγοντα (one-way ANOVA), ακολουθούμενη από post-hoc συγκρίσεις για την αξιολόγηση των διαφορών ομάδων μεταξύ των ομάδων μελέτης. Για τις διχότομες μεταβλητές, χρησιμοποιήθηκαν το x2 τεστ του Pearson και το ακριβές τεστ του Fisher. Ανάλυση απεικόνισης Η απεικόνιση πραγματοποιήθηκε χρησιμοποιώντας ακολουθίες T2W, FLAIR, T1W υψηλής ανάλυσης και DTI. Για τη δομική ανάλυση της επιφάνειας του φλοιού, χρησιμοποιήθηκαν εικόνες Τ1 υψηλής ανάλυσης. Ακολούθησε ανάλυση TBSS, με βάση τις εικόνες DTI. Στη συνέχεια, έγιναν συγκρίσεις μεταξύ των ομάδων, βασισμένες σε ογκοστοιχεία (voxel-wise) για την επιφάνεια του φλοιού, καθώς και στις παραμέτρους διάχυσης για τη λευκή ουσία. Αποτελέσματα Δημογραφικά και κλινικά δεδομένα Στη μελέτη συγκρίθηκαν 12 ασθενείς με AD, 15 ασθενείς με LBD (είτε PDD είτε DLB), 11 ασθενείς με CBS και 11 HC. Δε βρέθηκαν διαφορές μεταξύ των ομάδων ως προς το φύλο, τη διάρκεια της νόσου, τα έτη εκπαίδευσης ή άλλους κοινωνικοοικονομικούς παράγοντες. Ωστόσο, η ομάδα AD ήταν σημαντικά νεότερη (p < 0,05), σε σύγκριση με τις ομάδες LBD και CBS. Οι διαταραχές μνήμης ήταν το κύριο κλινικό χαρακτηριστικό της ομάδας AD, ενώ η δυσχέρεια βάδισης ή άλλα κινητικά συμπτώματα ήταν τα κύρια κλινικά χαρακτηριστικά για τις ομάδες LBD και CBS. Όλες οι ομάδες είχαν χαμηλές μέσες βαθμολογίες στην κλίμακα ACE-R (< 82/100). Οι βαθμολογίες της ομάδας AD ήταν χαμηλότερες στις δοκιμασίες μνήμης και γλώσσας. Οι ομάδα CBS είχαν τις χαμηλότερες επιδόσεις στις δοκιμασίες γλώσσας, ιδιαίτερα στη φωνημική ροή. Τέλος, και οι τρεις ομάδες είχαν κακή επίδοση στις οπτικοχωρικές δοκιμασίες. Επιφάνεια του φλοιού Όλες οι ομάδες ασθενών εμφάνισαν ατροφία σε σύγκριση με τους μάρτυρες. Η AD έδειξε μείωση της περιοχής επιφάνειας του φλοιού (CSA) στο μετωπιαίο λοβό, ιδίως στον αριστερό και δεξιό άνω μετωπιαίο φλοιό (SFC), (p = 0,0002), μαζί με το δεξιό κογχομετωπιαίο (OFC) και το δεξιό μέσο μετωπιαίο φλοιό (MFC), (p < 0.05). Μείωση του όγκου του φλοιού (CV) παρατηρήθηκε, επίσης, στο δεξιό SFC (p = 0,0002), στο δεξιό OFC (p = 0,0002) και στο δεξιό MFC (p < 0,05). Επιπλέον, η ομάδα LBD είχε μειωμένη CSA στον αριστερό άνω κροταφικό φλοιό (STC), ενώ η μειωμένη CSA σε μια άλλη περιοχή του STC αναδείχθηκε και για την ομάδα CBS (p < 0,05). Δεν ανιχνεύθηκαν διαφορές από τη σύγκριση μεταξύ των ομάδων ασθενών, εκτός από την ομάδα LBD, που είχε μεγαλύτερο πάχος φλοιού από την AD σε μια περιοχή του κάτω βρεγματικού φλοιού. Μετρήσεις διάχυσης Εκτεταμένες διαφορές στις μετρήσεις διάχυσης ανιχνεύθηκαν σε όλες τις μεγάλες οδούς της λευκής ουσίας για την ομάδα AD ως προς τους μάρτυρες και την ομάδα LBD. Και στις δύο περιπτώσεις, τα άτομα με AD παρουσίασαν χαμηλότερη κλασματική ανισοτροπία (FA) και αξονική διαχυτικότητα (AxialD), μαζί με υψηλότερη ακτινική διαχυτικότητα (RD). Τέλος, οι ασθενείς με CBS παρουσίασαν μεγαλύτερη RD από τους ασθενείς με LBD σε μια μικρή περιοχή της αριστερής έλικας του προσαγωγίου. Συμπεράσματα Τα αποτελέσματα υποδεικνύουν σημαντικές δομικές αλλαγές στη φαιά ουσία του μετωπιαίου λοβού σε ασθενείς με AD, μια περιοχή που δεν συνδέεται συνήθως με την παθολογία AD, τουλάχιστον στα αρχικά στάδια της νόσου. Οι αλλαγές αυτές υποδηλώνουν διαταραχές και στη δομική ακεραιότητα και συνδεσιμότητα της λευκής ουσίας. Άλλωστε, οι σημαντικές μεταβολές της λευκής ουσίας στην ομάδα AD υποδεικνύουν μειωμένη δομική ακεραιότητα και αυξημένη διάχυση των μορίων του νερού. Η συσχέτιση αυτών των ευρημάτων με την πορεία της AD παραμένει απροσδιόριστη. Μία πιθανή εξήγηση είναι η λεγόμενη υπόθεση αποσύνδεσης. Δηλαδή, η συμπτωματολογία AD δεν είναι αποκλειστικά το αποτέλεσμα της τοπογραφικής κατανομής των πλακών αμυλοειδούς ή των νευροϊνιδιακών συμπλεγμάτων, αλλά, μάλλον, μιας αποδιοργανωμένης αλληλεπίδρασης μεταξύ των νευρωνικών δικτύων, που οδηγεί σε διαταραχή της συνδεσιμότητας του εγκεφάλου. Μελέτες επικεντρωμένες στην ανάλυση των δικτύων συνδεσιμότητας του εγκεφάλου απαιτούνται στο μέλλον, προκειμένου να ελεγχθεί αυτή η υπόθεση.el
heal.abstractAims and scope This observational, retrospective study aims to assess structural changes in the gray matter (GM) and white matter (WM) among patients with Alzheimer’s disease (AD), Parkinson’s disease dementia (PDD), dementia with Lewy bodies (DLB) and corticobasal syndrome (CBS), via analysis of magnetic resonance imaging (MRI) of the brain. These neurodegenerative diseases share many common clinical features, presenting challenges for bedside diagnosis. Methods Participants All patients were recruited from the Neurology Department of the University Hospital of Ioannina. Their clinical evaluation was performed by two Neurologists (blinded). Inclusion criteria were age 50-80 years. Exclusion criteria included a history of major psychiatric or neurodevelopmental disorder, substance abuse, ischemic or hemorrhagic stroke, severe head trauma, intracranial surgery, tumor, arteriovenous malformation, or other intracranial mass, as well as a significant burden of white matter hyperintensities (Fazekas 2 or higher), or motion artefacts. All patients were thoroughly evaluated by two Neurologists (blinded). Patients were diagnosed according to the current clinical criteria for a probable diagnosis. Patients with either PDD or DLB were studied together, as a Lewy body dementias (LBD) group. For all subjects, relevant demographic data including age, gender, education level (years of education) and clinical indices such as disease duration were recorded for structural brain evaluation. These indices were used as covariates in the group comparisons conducted. Neuropsychological assessment All patients and HC underwent an extensive neuropsychological assessment by a specialized speech therapist (blinded). The following neuropsychological batteries were administered: Addenbrooke’s Cognitive Examination-Revised (ACE-R), Frontal Assessment Battery, Verbal Fluency Task, Trail Making Test A and B, Neuropsychiatric Inventory, and Geriatric Depression Scale. Statistical analysis Continuous demographic and clinical variables were assessed for normality using the Shapiro-Wilk test and subsequently analyzed with one-way ANOVA, followed by post-hoc comparisons to assess group differences between study groups. For nominal variables, the Pearson Chi-Square test and Fisher's Exact test were employed to determine significance. Imaging analysis Imaging was performed using T2W, FLAIR, T1W high resolution and a diffusion tensor imaging sequence. Cortical surface analysis of the high-resolution T1-weighted structural images was followed by Tract-Based Spatial Statistics (TBSS) analysis of the diffusion images. Voxel-wise comparisons of cortical surface and diffusion metrics were conducted to assess differences among the groups. Results Demographics and clinical data The study included 12 AD patients, 15 LBD patients (either dementia with Lewy bodies or Parkinson’s disease dementia), 11 CBS patients, and 11 healthy controls (HC). No differences were found between groups for sex, disease duration, years of education or other socioeconomic factors. However, the AD group was younger (p < 0.05), compared to the LBD and CBS groups. Memory impairment was main clinical feature for the AD group, while gait impairment or other motor features were the main clinical features for the LBD and CBS groups. All groups had low mean ACE-R scores (< 82/100). AD scores were poorer for memory and language subtests. CBS groups had the poorer performance in language tests, especially phonemic fluency. Lastly, all three groups performed poorly at visuospatial tests. Cortical Surface All patient groups exhibited atrophy compared to the healthy controls. AD showed cortical surface area (CSA) reduction in the frontal lobe (p=0.0002), especially in both left and right superior frontal cortices (SFC), along with reduction in the right orbitofrontal cortex (OFC), and right middle frontal cortex (p < 0.-05). Cortical volume (CV) reduction was also observed in the right SFC (p = 0.0002), right OFC (p = 0.0002), and right MFC, (p < 0.05). Additionally, LBD showed reduced CSA of the left superior temporal cortex (STC), while reduced CSA in another area of the STC was also shown in the CBS group (p < 0,05). No differences were detected between patient groups, except in the case where LBD demonstrated larger cortical thickness than AD in a region of the inferior parietal lobe. Diffusion Metrics Widespread differences in diffusion metrics were detected in all major white matter tracts between individuals with AD and HC or those with LBD. In both cases, individuals with Alzheimer’s disease exhibited lower fractional anisotropy (FA) and axial diffusivity (AxialD), along with higher radial diffusivity (RD). Finally, patients with CBS presented larger RD than patients with LBD in a small region of the left cingulate gyrus. Conclusions The results indicate significant structural changes in the GM of the frontal lobe in AD patients, an area not commonly associated with AD pathology, at least in the early stages of the disease. These changes suggest reduced structural integrity and disconnection of the underlying WM tracts in AD patients. Moreover, the significant WM alterations of the AD group are also suggestive of reduced structural integrity and increased water diffusivity within the white matter microstructure. The association of these findings with the course of AD remains undefined. One possible explanation is the so-called disconnection hypothesis, suggesting that AD symptomatology is not solely the result of the topographical distribution of accumulated amyloid plaques and neurofibrillary tangles, but rather a disorganized interaction between neuronal networks, leading to disturbed connectivity within the brain. Future studies focusing on network analysis of human brain connectivity are needed to test this hypothesis.en
heal.advisorNameΚονιτσιώτης, Σπυρίδωνel
heal.committeeMemberNameΑργυροπούλου, Μαρίαel
heal.committeeMemberNameΓιαννόπουλος, Σωτήριοςel
heal.committeeMemberNameΑρναούτογλου, Μαριάνθηel
heal.committeeMemberNameΑλεξίου, Γεώργιοςel
heal.committeeMemberNameΑστρακάς, Λουκάςel
heal.committeeMemberNameΚεφαλοπούλου, Ζηνοβίαel
heal.committeeMemberNameΚονιτσιώτης, Σπυρίδωνel
heal.academicPublisherΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής. Είναι Τομέας Νευρικού Συστήματος και Αισθητηρίων.el
heal.academicPublisherIDuoiel
heal.numberOfPages242el
heal.fullTextAvailabilitytrue-
heal.fullTextAvailabilitytrue-
Appears in Collections:Διδακτορικές Διατριβές - ΙΑΤ

Files in This Item:
File Description SizeFormat 
Giannakis-PHD-uoi-2024.pdf11.37 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.