Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/26648
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNikolopoulos, Stavros D.en
dc.date.accessioned2015-12-11T13:06:07Z-
dc.date.available2015-12-11T13:06:07Z-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/26648-
dc.rightsDefault License-
dc.subjectParallel algorithmsen
dc.subjectChordal graphsen
dc.subjectRecognitionen
dc.subjectMaximal cliquesen
dc.subjectDistance matrixen
dc.subjectGraph partitionen
dc.subjectComplexityen
dc.titleParallel recognition and location algorithms for chordal graphs using distance matricesen
heal.typebookChapter-
heal.type.enBook chapteren
heal.type.elΚεφάλαιο βιβλίουel
heal.generalDescription349-358 σ.el
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Η/Υ & Πληροφορικήςel
heal.publicationDate1994-
heal.bibliographicCitationΒιβλιογραφία: σ. 357-358el
heal.abstractWe present efficient parallel algorithms for recognizing chordal graphs and locating all maximal cliques of a chordal graph G=(V,E). Our techniques are based on partitioning the vertex set V using information contained in the distance matrix of the graph. We use these properties to formulate parallel algorithms which, given a graph G=(V,E) and its adjacency-level sets, decide whether or not G is a chordal graph, and, if so, locate all maximal cliques of the graph in time 0(k) by using 62»n2/k processors on a CRCW-PRAM, where δ is the maximum degree of a vertex in G and 1 <k<n. The construction of the adjacency-level sets can be done by computing first the distance matrix of the graph, in time O(logn) with 0(nP+DG) processors, where DG is the output size of the partitions and β=2.376, and then extracting all necessary set information. Hence, the overall time and processor complexity of both algorithms are CXlogn) and 0(max{62*n2/Zogn, nP+D0}), respectively. These results imply that, for 6<VnZogn, the proposed algorithms improve in performance upon the best-known algorithms for these problems.en
heal.publisher-
heal.fullTextAvailabilitytrue-
heal.bookName-en
Appears in Collections:Μονογραφίες ( Κλειστές)



This item is licensed under a Creative Commons License Creative Commons