Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/24315
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEmfietzoglou, D.en
dc.contributor.authorPapamichael, G.en
dc.contributor.authorKarava, K.en
dc.contributor.authorAndroulidakis, I. I.en
dc.contributor.authorPathak, A.en
dc.contributor.authorPhillips, G. W.en
dc.contributor.authorMoscovitch, M.en
dc.contributor.authorKostarelos, K.en
dc.date.accessioned2015-11-24T19:40:12Z-
dc.date.available2015-11-24T19:40:12Z-
dc.identifier.issn0144-8420-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/24315-
dc.rightsDefault Licence-
dc.subject*Algorithmsen
dc.subjectComputer Simulationen
dc.subject*Electronsen
dc.subjectIonsen
dc.subject*Linear Energy Transferen
dc.subject*Models, Statisticalen
dc.subject*Monte Carlo Methoden
dc.subjectNumerical Analysis, Computer-Assisteden
dc.subjectRadiation Dosageen
dc.subjectRadiation Protection/*methodsen
dc.subjectReproducibility of Resultsen
dc.subjectSensitivity and Specificityen
dc.subjectThermoluminescent Dosimetry/*methodsen
dc.titleA Monte-Carlo code for the detailed simulation of electron and light-ion tracks in condensed matteren
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primary10.1093/rpd/nci671-
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/16782980-
heal.identifier.secondaryhttp://rpd.oxfordjournals.org/content/119/1-4/491.full.pdf-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.publicationDate2006-
heal.abstractIn an effort to understand the basic mechanism of the action of charged particles in solid radiation dosimeters, we extend our Monte-Carlo code (MC4) to condensed media (liquids/solids) and present new track-structure calculations for electrons and protons. Modeling the energy dissipation process is based on a model dielectric function, which accounts in a semi-empirical and self-consistent way for condensed-phase effects which are computationally intractable. Importantly, these effects mostly influence track-structure characteristics at the nanometer scale, which is the focus of radiation action models. Since the event-by-event scheme for electron transport is impractical above several kilo-electron volts, a condensed-history random-walk scheme has been implemented to transport the energetic delta rays produced by energetic ions. Based on the above developments, new track-structure calculations are presented for two representative dosimetric materials, namely, liquid water and silicon. Results include radial dose distributions in cylindrical and spherical geometries, as well as, clustering distributions, which, among other things, are important in predicting irreparable damage in biological systems and prompt electric-fields in microelectronics.en
heal.journalNameRadiat Prot Dosimetryen
heal.journalTypepeer-reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΙΑΤ

Files in This Item:
File Description SizeFormat 
Emfietzoglou-2006-A Monte-Carlo code f.pdf256.52 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons