Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/24196
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tripoliti, E. E. | en |
dc.contributor.author | Fotiadis, D. I. | en |
dc.contributor.author | Argyropoulou, M. | en |
dc.date.accessioned | 2015-11-24T19:38:55Z | - |
dc.date.available | 2015-11-24T19:38:55Z | - |
dc.identifier.issn | 1557-170X | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/24196 | - |
dc.rights | Default Licence | - |
dc.subject | Adolescent | en |
dc.subject | Adult | en |
dc.subject | Aged | en |
dc.subject | Aged, 80 and over | en |
dc.subject | Algorithms | en |
dc.subject | Alzheimer Disease/*classification/*diagnosis | en |
dc.subject | Dementia/classification/diagnosis | en |
dc.subject | Diagnosis, Computer-Assisted/*methods | en |
dc.subject | Female | en |
dc.subject | Humans | en |
dc.subject | Linear Models | en |
dc.subject | Magnetic Resonance Imaging/*methods | en |
dc.subject | Male | en |
dc.subject | Normal Distribution | en |
dc.subject | *Signal Processing, Computer-Assisted | en |
dc.title | A supervised method to assist the diagnosis and classification of the status of Alzheimer's disease using data from an fMRI experiment | en |
heal.type | journalArticle | - |
heal.type.en | Journal article | en |
heal.type.el | Άρθρο Περιοδικού | el |
heal.identifier.primary | 10.1109/IEMBS.2008.4650191 | - |
heal.identifier.secondary | http://www.ncbi.nlm.nih.gov/pubmed/19163694 | - |
heal.identifier.secondary | http://ieeexplore.ieee.org/ielx5/4636107/4649055/04650191.pdf?tp=&arnumber=4650191&isnumber=4649055 | - |
heal.language | en | - |
heal.access | campus | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής | el |
heal.publicationDate | 2008 | - |
heal.abstract | The aim of this work is the development of a method to assist the diagnosis and classification of the status of Alzheimer's Disease (AD) using information that can be extracted from fMRI. The method consists of five stages: a) preprocessing of fMRI data to remove non-task related variability, b) modeling BOLD response depending on stimulus, c) feature extraction from fMRI data, d) feature selection and e) classification using the Random Forests (RF) algorithm. The proposed method is evaluated using data from 41 subjects (14 young adults, 14 non demented older adults and 13 demented older adults. | en |
heal.journalName | Conf Proc IEEE Eng Med Biol Soc | en |
heal.journalType | peer-reviewed | - |
heal.fullTextAvailability | TRUE | - |
Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΙΑΤ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Tripoliti-2008-A supervised method.pdf | 182.76 kB | Adobe PDF | View/Open Request a copy |
This item is licensed under a Creative Commons License