Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/24180
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarvelis, P. S.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorGeorgiou, I.en
dc.contributor.authorSyrrou, M.en
dc.date.accessioned2015-11-24T19:38:46Z-
dc.date.available2015-11-24T19:38:46Z-
dc.identifier.issn1557-170X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/24180-
dc.rightsDefault Licence-
dc.subjectBiomedical Engineeringen
dc.subjectChromosomes, Human/*classification/genetics/ultrastructureen
dc.subjectDatabases, Factualen
dc.subjectFemaleen
dc.subjectFluorescent Dyesen
dc.subjectHumansen
dc.subjectImage Interpretation, Computer-Assisteden
dc.subjectIn Situ Hybridization, Fluorescence/*methods/statistics & numerical dataen
dc.subjectMaleen
dc.titleA watershed based segmentation method for multispectral chromosome images classificationen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primary10.1109/IEMBS.2006.260682-
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/17946153-
heal.identifier.secondaryhttp://ieeexplore.ieee.org/ielx5/4028925/4461641/04462430.pdf?tp=&arnumber=4462430&isnumber=4461641-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.publicationDate2006-
heal.abstractM-FISH (multicolor fluorescence in situ hybridization) is a recently developed cytogenetic technique for cancer diagnosis and research on genetic disorders which uses 5 fluors to label uniquely each chromosome and a fluorescent DNA stain. In this paper, an automated method for chromosome classification in M-FISH images is presented. The chromosome image is initially decomposed into a set of primitive homogeneous regions through the morphological watershed transform applied to the image intensity gradient magnitude. Each segmented area is then classified using a Bayes classifier. We have evaluated our methodology on a commercial available M-FISH database. The classifier was trained and tested on non-overlapping chromosome images and an overall accuracy of 89% is achieved. By introducing feature averaging on watershed basins, the proposed technique achieves substantially better results than previous methods at a lower computational cost.en
heal.journalNameConf Proc IEEE Eng Med Biol Socen
heal.journalTypepeer-reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΙΑΤ

Files in This Item:
File Description SizeFormat 
Karvelis-2006-A watershed based se.pdf625.22 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons