Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/23895
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGiannakopoulos, X.en
dc.contributor.authorKarhunen, J.en
dc.contributor.authorOja, E.en
dc.date.accessioned2015-11-24T19:36:32Z-
dc.date.available2015-11-24T19:36:32Z-
dc.identifier.issn0129-0657-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/23895-
dc.rightsDefault Licence-
dc.subject*Algorithmsen
dc.subjectAnimalsen
dc.subjectArtifactsen
dc.subjectBrachyuraen
dc.subjectBrain/cytology/physiologyen
dc.subjectComputational Biologyen
dc.subjectFemaleen
dc.subjectHumansen
dc.subjectLearning/physiologyen
dc.subjectLinear Modelsen
dc.subjectMagnetoencephalographyen
dc.subjectMaleen
dc.subject*Neural Networks (Computer)en
dc.subjectNeurons/physiologyen
dc.subjectNonlinear Dynamicsen
dc.subjectSpacecraften
dc.titleAn experimental comparison of neural algorithms for independent component analysis and blind separationen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/10529083-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.publicationDate1999-
heal.abstractIn this paper, we compare the performance of five prominent neural or adaptive algorithms designed for Independent Component Analysis (ICA) and blind source separation (BSS). In the first part of the study, we use artificial data for comparing the accuracy, convergence speed, computational load, and other relevant properties of the algorithms. In the second part, the algorithms are applied to three different real-world data sets. The task is either blind source separation or finding interesting directions in the data for visualisation purposes. We develop criteria for selecting the most meaningful basis vectors of ICA and measuring the quality of the results. The comparison reveals characteristic differences between the studied ICA algorithms. The most important conclusions of our comparison are robustness of the ICA algorithms with respect to modest modeling imperfections, and the superiority of fixed-point algorithms with respect to the computational load.en
heal.journalNameInt J Neural Systen
heal.journalTypepeer-reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΙΑΤ

Files in This Item:
There are no files associated with this item.


This item is licensed under a Creative Commons License Creative Commons