Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/23895
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Giannakopoulos, X. | en |
dc.contributor.author | Karhunen, J. | en |
dc.contributor.author | Oja, E. | en |
dc.date.accessioned | 2015-11-24T19:36:32Z | - |
dc.date.available | 2015-11-24T19:36:32Z | - |
dc.identifier.issn | 0129-0657 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/23895 | - |
dc.rights | Default Licence | - |
dc.subject | *Algorithms | en |
dc.subject | Animals | en |
dc.subject | Artifacts | en |
dc.subject | Brachyura | en |
dc.subject | Brain/cytology/physiology | en |
dc.subject | Computational Biology | en |
dc.subject | Female | en |
dc.subject | Humans | en |
dc.subject | Learning/physiology | en |
dc.subject | Linear Models | en |
dc.subject | Magnetoencephalography | en |
dc.subject | Male | en |
dc.subject | *Neural Networks (Computer) | en |
dc.subject | Neurons/physiology | en |
dc.subject | Nonlinear Dynamics | en |
dc.subject | Spacecraft | en |
dc.title | An experimental comparison of neural algorithms for independent component analysis and blind separation | en |
heal.type | journalArticle | - |
heal.type.en | Journal article | en |
heal.type.el | Άρθρο Περιοδικού | el |
heal.identifier.secondary | http://www.ncbi.nlm.nih.gov/pubmed/10529083 | - |
heal.language | en | - |
heal.access | campus | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής | el |
heal.publicationDate | 1999 | - |
heal.abstract | In this paper, we compare the performance of five prominent neural or adaptive algorithms designed for Independent Component Analysis (ICA) and blind source separation (BSS). In the first part of the study, we use artificial data for comparing the accuracy, convergence speed, computational load, and other relevant properties of the algorithms. In the second part, the algorithms are applied to three different real-world data sets. The task is either blind source separation or finding interesting directions in the data for visualisation purposes. We develop criteria for selecting the most meaningful basis vectors of ICA and measuring the quality of the results. The comparison reveals characteristic differences between the studied ICA algorithms. The most important conclusions of our comparison are robustness of the ICA algorithms with respect to modest modeling imperfections, and the superiority of fixed-point algorithms with respect to the computational load. | en |
heal.journalName | Int J Neural Syst | en |
heal.journalType | peer-reviewed | - |
heal.fullTextAvailability | TRUE | - |
Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΙΑΤ |
Files in This Item:
There are no files associated with this item.
This item is licensed under a Creative Commons License