Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/21650
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIoannidis, J. P.en
dc.contributor.authorTrikalinos, T. A.en
dc.contributor.authorZintzaras, E.en
dc.date.accessioned2015-11-24T19:16:21Z-
dc.date.available2015-11-24T19:16:21Z-
dc.identifier.issn0895-4356-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/21650-
dc.rightsDefault Licence-
dc.subjectDatabases, Bibliographicen
dc.subjectEpidemiologic Methodsen
dc.subjectHumansen
dc.subject*Meta-Analysis as Topicen
dc.subjectResearch Designen
dc.subjectReview Literature as Topicen
dc.subjectScientific Misconducten
dc.titleExtreme between-study homogeneity in meta-analyses could offer useful insightsen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primary10.1016/j.jclinepi.2006.02.013-
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/16980141-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0895435606001363/1-s2.0-S0895435606001363-main.pdf?_tid=096785cda84448f6d2085cb46d41a022&acdnat=1333364197_6a0aad50f2569395bd88bccc0d17af0e-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.publicationDate2006-
heal.abstractOBJECTIVES: Meta-analyses are routinely evaluated for the presence of large between-study heterogeneity. We examined whether it is also important to probe whether there is extreme between-study homogeneity. STUDY DESIGN: We used heterogeneity tests with left-sided statistical significance for inference and developed a Monte Carlo simulation test for testing extreme homogeneity in risk ratios across studies, using the empiric distribution of the summary risk ratio and heterogeneity statistic. A left-sided P=0.01 threshold was set for claiming extreme homogeneity to minimize type I error. RESULTS: Among 11,803 meta-analyses with binary contrasts from the Cochrane Library, 143 (1.21%) had left-sided P-value <0.01 for the asymptotic Q statistic and 1,004 (8.50%) had left-sided P-value <0.10. The frequency of extreme between-study homogeneity did not depend on the number of studies in the meta-analyses. We identified examples where extreme between-study homogeneity (left-sided P-value <0.01) could result from various possibilities beyond chance. These included inappropriate statistical inference (asymptotic vs. Monte Carlo), use of a specific effect metric, correlated data or stratification using strong predictors of outcome, and biases and potential fraud. CONCLUSION: Extreme between-study homogeneity may provide useful insights about a meta-analysis and its constituent studies.en
heal.journalNameJ Clin Epidemiolen
heal.journalTypepeer-reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΙΑΤ

Files in This Item:
File Description SizeFormat 
Ioannidis-2006-Extreme between-stud.pdf304.43 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons