Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/20041
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDilmanian, F. A.en
dc.contributor.authorRomanelli, P.en
dc.contributor.authorZhong, Z.en
dc.contributor.authorWang, R.en
dc.contributor.authorWagshul, M. E.en
dc.contributor.authorKalef-Ezra, J.en
dc.contributor.authorMaryanski, M. J.en
dc.contributor.authorRosen, E. M.en
dc.contributor.authorAnschel, D. J.en
dc.date.accessioned2015-11-24T19:04:26Z-
dc.date.available2015-11-24T19:04:26Z-
dc.identifier.issn1872-7727-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/20041-
dc.rightsDefault Licence-
dc.subjectAlgorithmsen
dc.subjectBrain/*physiology/*radiation effectsen
dc.subjectComputer Simulationen
dc.subjectGels/radiation effectsen
dc.subjectHumansen
dc.subject*Models, Biologicalen
dc.subjectMonte Carlo Methoden
dc.subjectRadiometry/*methodsen
dc.subjectRadiotherapy Dosageen
dc.subjectRadiotherapy Planning, Computer-Assisted/*methodsen
dc.subjectRadiotherapy, High-Energy/*methodsen
dc.subjectScattering, Radiationen
dc.subject*Synchrotronsen
dc.titleMicrobeam radiation therapy: tissue dose penetration and BANG-gel dosimetry of thick-beams' array interlacingen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primary10.1016/j.ejrad.2008.04.055-
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/18606516-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0720048X08002970/1-s2.0-S0720048X08002970-main.pdf?_tid=077c6d69a239672178f2a17d5f8865e4&acdnat=1333088221_653fcaade346cfa6e7a32b8b8ea54e88-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.publicationDate2008-
heal.abstractThe tissue-sparing effect of parallel, thin (narrower than 100 microm) synchrotron-generated X-ray planar beams (microbeams) in healthy tissues including the central nervous system (CNS) is known since early 1990 s. This, together with a remarkable preferential tumoricidal effect of such beam arrays observed at high doses, has been the basis for labeling the method microbeam radiation therapy (MRT). Recent studies showed that beams as thick as 0.68 mm ("thick microbeams") retain part of their sparing effect in the rat's CNS, and that two such orthogonal microbeams arrays can be interlaced to produce an unsegmented field at the target, thus producing focal targeting. We measured the half-value layer (HVL) of our 120-keV median-energy beam in water phantoms, and we irradiated stereotactically bis acrylamide nitrogen gelatin (BANG)-gel-filled phantoms, including one containing a human skull, with interlaced microbeams and imaged them with MRI. A 43-mm water HVL resulted, together with an adequately large peak-to-valley ratio of the microbeams' three-dimensional dose distribution in the vicinity of the 20 mm x 20 mm x 20 mm target deep into the skull. Furthermore, the 80-20% dose fall off was a fraction of a millimeter as predicted by Monte Carlo simulations. We conclude that clinical MRT will benefit from the use of higher beam energies than those used here, although the current energy could serve certain neurosurgical applications. Furthermore, thick microbeams particularly when interlaced present some advantages over thin microbeams in that they allow the use of higher beam energies and they could conceivably be implemented with high power orthovoltage X-ray tubes.en
heal.journalNameEur J Radiolen
heal.journalTypepeer-reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΙΑΤ

Files in This Item:
File Description SizeFormat 
Dilmanian-2008-Microbeam radiation.pdf762.85 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons