Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/19939
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEmfietzoglou, D.en
dc.contributor.authorKarava, K.en
dc.contributor.authorPapamichael, G.en
dc.contributor.authorMoscovitch, M.en
dc.date.accessioned2015-11-24T19:03:52Z-
dc.date.available2015-11-24T19:03:52Z-
dc.identifier.issn0031-9155-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/19939-
dc.rightsDefault Licence-
dc.subject*Electronsen
dc.subject*Linear Energy Transferen
dc.subject*Models, Chemicalen
dc.subject*Models, Statisticalen
dc.subjectMonte Carlo Methoden
dc.subjectRadiometry/*methodsen
dc.subjectScattering, Radiationen
dc.subjectSolutions/*chemistry/*radiation effectsen
dc.subjectWater/*chemistryen
dc.titleMonte Carlo simulation of the energy loss of low-energy electrons in liquid wateren
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/12953903-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.publicationDate2003-
heal.abstractA Monte Carlo code that performs detailed (i.e. event-by-event) simulation of the transport and energy loss of low-energy electrons (approximately 50-10 000 eV) in water in the liquid phase is presented. The inelastic model for energy loss is based on a semi-empirical dielectric-response function for the valence-shells of the liquid whereas an exchange corrected semi-classical formula was used for K-shell ionization. Following a methodology widely used for the vapour phase, we succeeded in parametrizing the dielectric cross-sections of the liquid in accordance with the Bethe asymptote, thus providing a unified approach for both phases of water and greatly facilitating the computations. Born-corrections at lower energies have been implemented in terms of a second-order perturbation term with a simple Coulomb-field correction and the use of a Mott-type exchange modification. Angular deflections were determined by empirical schemes established from vapour data. Electron tracks generated by the code were used to calculate energy- and interaction-point-kernel distributions at low electron energies in liquid water. The effect of various model assumptions (e.g., dispersion, Born-corrections, phase) on both the single-collision and slowing-down distributions is examined.en
heal.journalNamePhys Med Biolen
heal.journalTypepeer-reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΙΑΤ

Files in This Item:
File Description SizeFormat 
Emfietzoglou-2003-monte carlo simulation.pdf250.74 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons