Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/19628
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPoulos, M.en
dc.contributor.authorRangoussi, M.en
dc.contributor.authorAlexandris, N.en
dc.contributor.authorEvangelou, A.en
dc.date.accessioned2015-11-24T19:00:59Z-
dc.date.available2015-11-24T19:00:59Z-
dc.identifier.issn1463-9238-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/19628-
dc.rightsDefault Licence-
dc.subjectAdulten
dc.subjectAlpha Rhythmen
dc.subjectAnthropology, Physical/*methodsen
dc.subjectBeta Rhythmen
dc.subjectElectroencephalography/*methodsen
dc.subjectFalse Negative Reactionsen
dc.subjectFalse Positive Reactionsen
dc.subjectFemaleen
dc.subjectFourier Analysisen
dc.subjectHumansen
dc.subjectMaleen
dc.subjectMedical Informatics Applicationsen
dc.subjectMedical Informatics Computingen
dc.subjectMiddle Ageden
dc.subject*Neural Networks (Computer)en
dc.subjectPatient Identification Systems/*methodsen
dc.subjectPedigreeen
dc.subjectSensitivity and Specificityen
dc.subject*Signal Processing, Computer-Assisteden
dc.subjectTheta Rhythmen
dc.titleOn the use of EEG features towards person identification via neural networksen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/11583407-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.publicationDate2001-
heal.abstractPerson identification based on spectral information extracted from the EEG is addressed in this work a problem that has not yet been seen in a signal processing framework. Spectral features are extracted non-parametrically from real EEG data recorded from healthy individuals. Neural network classification is applied on these features using a Learning Vector Quantizer in an attempt to experimentally investigate the connection between a person's EEG and genetically specific information. The proposed method, compared with previously proposed methods, has yielded encouraging correct classification scores in the range of 80% to 100% (case-dependent). These results are in agreement with previous research showing evidence that the EEG carries genetic information.en
heal.journalNameMed Inform Internet Meden
heal.journalTypepeer-reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΙΑΤ

Files in This Item:
There are no files associated with this item.


This item is licensed under a Creative Commons License Creative Commons