Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/18952
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBolis, D.en
dc.contributor.authorPolitou, A. S.en
dc.contributor.authorKelly, G.en
dc.contributor.authorPastore, A.en
dc.contributor.authorTemussi, P. A.en
dc.date.accessioned2015-11-24T18:55:55Z-
dc.date.available2015-11-24T18:55:55Z-
dc.identifier.issn0022-2836-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/18952-
dc.rightsDefault Licence-
dc.subjectAcrylic Resins/*chemistryen
dc.subjectBacterial Proteins/*chemistry/metabolismen
dc.subjectEscherichia coli Proteinsen
dc.subjectHumansen
dc.subjectIron-Binding Proteins/*chemistry/metabolismen
dc.subjectMuscle Proteins/*chemistry/metabolismen
dc.subject*Protein Conformationen
dc.subjectProtein Denaturationen
dc.subjectProtein Foldingen
dc.subjectProtein Kinases/*chemistry/metabolismen
dc.subjectTemperatureen
dc.subjectThermodynamicsen
dc.subjectViscosityen
dc.titleProtein stability in nanocages: a novel approach for influencing protein stability by molecular confinementen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/14741216-
heal.identifier.secondaryhttp://ac.els-cdn.com/S002228360301475X/1-s2.0-S002228360301475X-main.pdf?_tid=afa6bd12c920aefeb664b5b9311e5fc2&acdnat=1333004702_c19eb14f82394495851559569a953dca-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.publicationDate2004-
heal.abstractConfinement of a protein in a small inert space and microviscosity are known to increase its thermodynamic stability in a way similar to the mechanisms that stabilize protein fold in the cell. Here, to examine the influence of confinement on protein stability we choose four test cases of single domain proteins characterized by a wide range of melting temperatures, from approximately 73 degrees C of titin I27 to approximately 36 degrees C of yeast frataxin. All proteins are stabilized when confined in the gel, the most dramatic stabilization being that of yeast frataxin, whose melting temperature increased by almost 5 degrees C in the gel. In addition to being simple to use, this approach allows us to change the viscosity of the solvent without changing its composition or altering the structure of the proteins. The dimensions of the pores of the gels fall in the nanometer range, hence they are similar to those of the chaperone cavity. This method could therefore be used as a novel and powerful approach for protein folding studies.en
heal.journalNameJ Mol Biolen
heal.journalTypepeer-reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΙΑΤ

Files in This Item:
File Description SizeFormat 
Bolis-2004-Protein stability in.pdf420.48 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons