Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/18775
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRigas, G.en
dc.contributor.authorTzallas, A. T.en
dc.contributor.authorTsalikakis, D. G.en
dc.contributor.authorKonitsiotis, S.en
dc.contributor.authorFotiadis, D. I.en
dc.date.accessioned2015-11-24T18:54:56Z-
dc.date.available2015-11-24T18:54:56Z-
dc.identifier.issn1557-170X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/18775-
dc.rightsDefault Licence-
dc.subjectAccelerationen
dc.subjectAdulten
dc.subjectBiomedical Engineeringen
dc.subjectComputer Systemsen
dc.subjectDiagnosis, Computer-Assisteden
dc.subjectFemaleen
dc.subjectHumansen
dc.subjectMaleen
dc.subjectNeural Networks (Computer)en
dc.subjectParkinson Disease/*diagnosis/*physiopathologyen
dc.subjectRegression Analysisen
dc.subjectTremor/*diagnosis/*physiopathologyen
dc.titleReal-time quantification of resting tremor in the Parkinson's diseaseen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primary10.1109/IEMBS.2009.5332580-
heal.identifier.secondaryhttp://www.ncbi.nlm.nih.gov/pubmed/19963494-
heal.identifier.secondaryhttp://ieeexplore.ieee.org/ielx5/5307844/5332379/05332580.pdf?tp=&arnumber=5332580&isnumber=5332379-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικήςel
heal.publicationDate2009-
heal.abstractResting tremor (RT) is one of the most frequent signs of the Parkinson's disease (PD), occurring with various severities in about 75% of the patients. Current diagnosis is based on subjective clinical assessment, which is not always easy to capture subtle, mild and intermittent tremors. The aim of the present study is to assess the suitability and clinical value of a computer based real-time system as an aid to diagnosis of PD, in particular the presence of RT. Five healthy subjects were asked to simulate several severities of RT in hands and feet in three static activities. The behaviour of the subjects is measured using tri-axial accelerometers, which are placed at four different positions on the body. Frequency-domain features, strongly correlated with the RT activity, are extracted from the accelerometer data. The classification of RT severity based on those features, provided accuracy 76%. The real-time system designed for efficient extraction of those features and the provision of a continuous RT severity measure is described.en
heal.journalNameConf Proc IEEE Eng Med Biol Socen
heal.journalTypepeer-reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΙΑΤ

Files in This Item:
File Description SizeFormat 
Rigas-2009-Real-time quantifica.pdf661.85 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons