Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/17351
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMatsoukas, C.en
dc.contributor.authorBenas, N.en
dc.contributor.authorHatzianastassiou, N.en
dc.contributor.authorPavlakis, K. G.en
dc.contributor.authorKanakidou, M.en
dc.contributor.authorVardavas, I.en
dc.date.accessioned2015-11-24T18:38:31Z-
dc.date.available2015-11-24T18:38:31Z-
dc.identifier.issn1680-7316-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/17351-
dc.rightsDefault Licence-
dc.subjectlongwave radiationen
dc.subjectpan evaporationen
dc.subjectshortwave radiationen
dc.subjectnorthern-hemisphereen
dc.subjectclimatological dataen
dc.subjectunited-statesen
dc.subjectglobal distributionen
dc.subjecttropical pacificen
dc.subjectperiod 1984-2000en
dc.subjectclimate-changeen
dc.titlePotential evaporation trends over land between 1983-2008: driven by radiative fluxes or vapour-pressure deficit?en
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDOI 10.5194/acp-11-7601-2011-
heal.identifier.secondary<Go to ISI>://000293826500012-
heal.identifier.secondaryhttp://www.atmos-chem-phys.net/11/7601/2011/acp-11-7601-2011.pdf-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών και Τεχνολογιών. Τμήμα Βιολογικών Εφαρμογών και Τεχνολογιώνel
heal.publicationDate2011-
heal.abstractWe model the Penman potential evaporation (PE) over all land areas of the globe for the 25-yr period 1983-2008, relying on radiation transfer models (RTMs) for the shortwave and longwave fluxes. Penman's PE is determined by two factors: available energy for evaporation and ground to atmosphere vapour transfer. Input to the PE model and RTMs comprises satellite cloud and aerosol data, as well as data from reanalyses. PE is closely linked to pan evaporation, whose trends have sparked controversy in the community, since the factors responsible for the observed pan evaporation trends are not determined with consensus. Our particular interest is the temporal evolution of PE, and the provided insight to the observed trends of pan evaporation. We examine the decadal trends of PE and various related physical quantities, such as net solar flux, net longwave flux, water vapour saturation deficit and wind speed. Our findings are the following: Global warming has led to a larger water vapour saturation deficit. The periods 1983-1989, 1990-1999, and 2000-2008 were characterised by decreasing, increasing, and slightly decreasing PE, respectively. In these last 25 yr, global dimming/brightening cycles generally increased the available energy for evaporation. PE trends seem to follow more closely the trends of energy availability than the trends of the atmospheric capability for vapour transfer, at most locations on the globe, with trends in the Northern hemisphere significantly larger than in the Southern. These results support the hypothesis that global potential evaporation trends are attributed primarily to secular changes in the radiation fluxes, and secondarily to vapour transfer considerations.en
heal.journalNameAtmospheric Chemistry and Physicsen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Matsoukas-2011-Potential evaporatio.pdf1.16 MBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons