Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/13395
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYamaguchi, T.en
dc.contributor.authorIshikawa, T.en
dc.contributor.authorImai, Y.en
dc.contributor.authorMatsuki, N.en
dc.contributor.authorXenos, M.en
dc.contributor.authorDeng, Y. F.en
dc.contributor.authorBluestein, D.en
dc.date.accessioned2015-11-24T17:27:31Z-
dc.date.available2015-11-24T17:27:31Z-
dc.identifier.issn0090-6964-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13395-
dc.rightsDefault Licence-
dc.subjectmultiscale modelingen
dc.subjectnumerical methodsen
dc.subjectparticle dynamicsen
dc.subjectdpden
dc.subjectblood flowen
dc.subjectdevicesen
dc.subjectclottingen
dc.subjectplateletsen
dc.subjectparallel molecular-dynamicsen
dc.subjectvon-willebrand-factoren
dc.subjectnumerical-simulationen
dc.subjectcomputer-simulationen
dc.subjecttransport processesen
dc.subjectboundary-conditionsen
dc.subjectcapillary vesselsen
dc.subjectelement-methoden
dc.subjectporous-mediaen
dc.subjectcell motionen
dc.titleParticle-Based Methods for Multiscale Modeling of Blood Flow in the Circulation and in Devices: Challenges and Future Directionsen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDOI 10.1007/s10439-010-9904-x-
heal.identifier.secondary<Go to ISI>://000275746900058-
heal.identifier.secondaryhttp://www.springerlink.com/content/a06j2r45r05474j2/fulltext.pdf-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.publicationDate2010-
heal.abstractA major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport.en
heal.publisherSpringer Verlag (Germany)en
heal.journalNameAnn Biomed Engen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά). ΜΑΘ

Files in This Item:
File Description SizeFormat 
Yamaguchi-2010-Particle-Based Metho.pdf1.1 MBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons