Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/13382
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShen, J. H.en
dc.contributor.authorStavroulakis, I. P.en
dc.date.accessioned2015-11-24T17:27:27Z-
dc.date.available2015-11-24T17:27:27Z-
dc.identifier.issn0022-247X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13382-
dc.rightsDefault Licence-
dc.subjectdifferential equationen
dc.subjectpiecewise constant argumenten
dc.subjectoscillationen
dc.subjectnonoscillationen
dc.subjectdifferential-equationsen
dc.titleOscillatory and nonoscillatory delay equations with piecewise constant argumenten
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.secondary<Go to ISI>://000088793300004-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0022247X00969087/1-s2.0-S0022247X00969087-main.pdf?_tid=9dd3342c3954657e2a4f70a7fc502831&acdnat=1338451091_6c3d6d504032f667744aa4f1a42661da-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.publicationDate2000-
heal.abstractWe introduce a new technique to analyze certain difference equations to obtain some new type and also "best possible" oscillation and nonoscillation criteria for the nonautonomous delay differential equation with piecewise constant argument of the form y'(t) + a(t)y(t) + b(t)y([t - 1]) = 0, where a(t) and b(t) are continuous functions on [-1, infinity), b(t) greater than or equal to 0, and [.] denotes the greatest integer function. (C) 2000 Academic Press.en
heal.publisherElsevieren
heal.journalNameJournal of Mathematical Analysis and Applicationsen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά). ΜΑΘ

Files in This Item:
File Description SizeFormat 
Shen-2000-Oscillatory and nono.pdf103.87 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons