Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/13298Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Chatzarakis, G. E. | en |
| dc.contributor.author | Koplatadze, R. | en |
| dc.contributor.author | Stavroulakis, I. P. | en |
| dc.date.accessioned | 2015-11-24T17:27:01Z | - |
| dc.date.available | 2015-11-24T17:27:01Z | - |
| dc.identifier.issn | 0030-8730 | - |
| dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/13298 | - |
| dc.rights | Default Licence | - |
| dc.subject | difference equation | en |
| dc.subject | proper solution | en |
| dc.subject | positive solution | en |
| dc.subject | oscillatory | en |
| dc.title | Optimal oscillation criteria for first order difference equations with delay argument | en |
| heal.type | journalArticle | - |
| heal.type.en | Journal article | en |
| heal.type.el | Άρθρο Περιοδικού | el |
| heal.identifier.secondary | <Go to ISI>://000254381400002 | - |
| heal.language | en | - |
| heal.access | campus | - |
| heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
| heal.publicationDate | 2008 | - |
| heal.abstract | Consider the first order linear difference equation Delta u(k)+ p(k) u(tau(k) = 0, k is an element of N, where Delta u(k) = u(k+1) - u(k), p : N --> R+, tau : N --> N, tau(k) <= k - 2 and lim(k-->+infinity) tau(k) = +infinity. Optimal conditions for the oscillation of all proper solutions of this equation are established. The results lead to a sharp oscillation condition, when k - tau(k) -->+ infinity as k -->+infinity. Examples illustrating the results are given. | en |
| heal.journalName | Pacific Journal of Mathematics | en |
| heal.journalType | peer reviewed | - |
| heal.fullTextAvailability | TRUE | - |
| Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά). ΜΑΘ | |
Files in This Item:
There are no files associated with this item.
This item is licensed under a Creative Commons License