Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/12897Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Papadopoulos, C. | en |
| dc.contributor.author | Heggernes, P. | en |
| dc.contributor.author | Meister, D. | en |
| dc.date.accessioned | 2015-11-24T17:24:27Z | - |
| dc.date.available | 2015-11-24T17:24:27Z | - |
| dc.identifier.issn | 0304-3975 | - |
| dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/12897 | - |
| dc.rights | Default Licence | - |
| dc.title | Graphs of linear clique-width at most 3 | en |
| heal.type | journalArticle | - |
| heal.type.en | Journal article | en |
| heal.type.el | Άρθρο Περιοδικού | el |
| heal.language | en | - |
| heal.access | campus | - |
| heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
| heal.publicationDate | 2011 | - |
| heal.abstract | A graph has linear clique-width at most k if it has a clique-width expression using at most k labels such that every disjoint union operation has an operand which is a single vertex graph. We give the first characterisation of graphs of linear clique-width at most 3, and we give the first polynomial-time recognition algorithm for graphs of linear clique-width at most 3. In addition, we present new characterisations of graphs of linear clique-width at most 2. We also give a layout characterisation of graphs of bounded linear clique-width; a similar characterisation was independently shown by Gurski and by Lozin and Rautenbach | en |
| heal.publisher | Elsevier | en |
| heal.journalName | Theoretical Computer Science | en |
| heal.journalType | peer reviewed | - |
| heal.fullTextAvailability | TRUE | - |
| Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά). ΜΑΘ | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Papadopoulos-2011-graphs of linear.pdf | 393.71 kB | Adobe PDF | View/Open Request a copy |
This item is licensed under a Creative Commons License