Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/12889Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Ntouyas S. K., Tsamatos P. Ch. | en |
| dc.date.accessioned | 2015-11-24T17:24:23Z | - |
| dc.date.available | 2015-11-24T17:24:23Z | - |
| dc.identifier.issn | 0003-6811 | - |
| dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/12889 | - |
| dc.rights | Default Licence | - |
| dc.subject | Leray-Schauder alternative, A priori bounds, Semilinear evolution, Integrodifferential equations, Nonlocal Cauchy problem, Global existence | en |
| dc.title | Global existence for semilinear evolution integrodifferential equations with delay AND nonlocal conditions | en |
| heal.type | journalArticle | - |
| heal.type.en | Journal article | en |
| heal.type.el | Άρθρο Περιοδικού | el |
| heal.identifier.primary | 10.1080/00036819708840525 | - |
| heal.identifier.secondary | http://www.tandfonline.com/doi/abs/10.1080/00036819708840525 | - |
| heal.language | en | - |
| heal.access | campus | - |
| heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
| heal.publicationDate | 1997 | - |
| heal.abstract | In this paper, we study the global existence of solutions for semilinear evolution integrodifferential equations with nonlocal conditions, via a fixed point analysis approach. Using the Leray-Schauder Alternative, we derive conditions under which a solution exists globally. | en |
| heal.publisher | Taylor & Francis | en |
| heal.journalName | Applicable Analysis: An International Journal | en |
| heal.journalType | peer reviewed | - |
| heal.fullTextAvailability | TRUE | - |
| Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά). ΜΑΘ | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Ntouyas-1997-Global existence for semilinear.pdf | 262.85 kB | Adobe PDF | View/Open Request a copy |
This item is licensed under a Creative Commons License