Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/12788Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Benchohra M. | en |
| dc.date.accessioned | 2015-11-24T17:23:43Z | - |
| dc.date.available | 2015-11-24T17:23:43Z | - |
| dc.identifier.issn | 0022-247X | - |
| dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/12788 | - |
| dc.rights | Default Licence | - |
| dc.subject | Impulsiveneutralsemilinearfunctionaldifferentialinclusions | en |
| dc.subject | fixed point | en |
| dc.subject | Banachspace | en |
| dc.title | Existence Results for Impulsive Multivalued Semilinear Neutral Functional Differential Inclusions in Banach Spaces | en |
| heal.type | journalArticle | - |
| heal.type.en | Journal article | en |
| heal.type.el | Άρθρο Περιοδικού | el |
| heal.identifier.primary | 10.1006/jmaa.2001.7663 | - |
| heal.identifier.secondary | http://www.sciencedirect.com/science/article/pii/S0022247X01976632 | - |
| heal.language | en | - |
| heal.access | campus | - |
| heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
| heal.publicationDate | 2001 | - |
| heal.abstract | In this paper, the existence of mild solutions for first- and second-order impulsivesemilinearneutralfunctionaldifferentialinclusions in Banachspaces is investigated. The results are obtained by using a fixed point theorem for condensing multivalued maps due to Martelli and semigroup theory. | en |
| heal.publisher | Elsevier | en |
| heal.journalName | Journal of Mathematical Analysis and Applications | en |
| heal.journalType | peer reviewed | - |
| heal.fullTextAvailability | TRUE | - |
| Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά). ΜΑΘ | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Ntouyas-2001-Existence results for impulsive.pdf | 135.35 kB | Adobe PDF | View/Open Request a copy |
This item is licensed under a Creative Commons License