Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/12672
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hasanis, T. | en |
dc.contributor.author | Vlachos, T. | en |
dc.date.accessioned | 2015-11-24T17:22:50Z | - |
dc.date.available | 2015-11-24T17:22:50Z | - |
dc.identifier.issn | 0003-889X | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/12672 | - |
dc.rights | Default Licence | - |
dc.subject | mean curvature | en |
dc.title | Curvature properties of hypersurfaces | en |
heal.type | journalArticle | - |
heal.type.en | Journal article | en |
heal.type.el | Άρθρο Περιοδικού | el |
heal.identifier.primary | DOI 10.1007/s00013-003-4648-6 | - |
heal.identifier.secondary | <Go to ISI>://000222678500011 | - |
heal.identifier.secondary | http://link.springer.com/content/pdf/10.1007%2Fs00013-003-4648-6.pdf | - |
heal.language | en | - |
heal.access | campus | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
heal.publicationDate | 2004 | - |
heal.abstract | In this paper we deal with curvature properties of hypersurfaces in an Euclidean space. We prove that an entire graph whose mean curvature does not change sign satisfies inf parallel toAparallel to = 0, if the length parallel toAparallel to\ of the shape operator A is bounded. Moreover, we show that an entire graph with constant r-th mean curvature H-r satisfies H-r = 0, if the length parallel toAparallel to of the shape operator A is bounded. | en |
heal.publisher | Springer Verlag (Germany) | en |
heal.journalName | Archiv Der Mathematik | en |
heal.journalType | peer reviewed | - |
heal.fullTextAvailability | TRUE | - |
Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά). ΜΑΘ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Hasanis-2004-Curvature properties.pdf | 76.58 kB | Adobe PDF | View/Open Request a copy |
This item is licensed under a Creative Commons License