Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/12632Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Hasanis, T. | en |
| dc.contributor.author | Savas-Halilaj, A. | en |
| dc.contributor.author | Vlachos, T. | en |
| dc.date.accessioned | 2015-11-24T17:22:35Z | - |
| dc.date.available | 2015-11-24T17:22:35Z | - |
| dc.identifier.issn | 0026-9255 | - |
| dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/12632 | - |
| dc.rights | Default Licence | - |
| dc.subject | minimal hypersurface | en |
| dc.subject | second fundamental form | en |
| dc.subject | clifford torus | en |
| dc.subject | curvature | en |
| dc.subject | rigidity | en |
| dc.title | Complete minimal hypersurfaces in a sphere | en |
| heal.type | journalArticle | - |
| heal.type.en | Journal article | en |
| heal.type.el | Άρθρο Περιοδικού | el |
| heal.identifier.primary | DOI 10.1007/s00605-004-0285-9 | - |
| heal.identifier.secondary | <Go to ISI>://000230910900003 | - |
| heal.identifier.secondary | http://link.springer.com/content/pdf/10.1007%2Fs00605-004-0285-9.pdf | - |
| heal.language | en | - |
| heal.access | campus | - |
| heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών | el |
| heal.publicationDate | 2005 | - |
| heal.abstract | In this paper we investigate complete minimal hypersurfaces f : M-n -> Sn+1 with at most two principal curvatures. We prove that if the squared norm S of the second fundamental form satisfies S >= n, then S = n and f(M-n) is a minimal Clifford torus. | en |
| heal.publisher | Springer Verlag (Germany) | en |
| heal.journalName | Monatshefte Fur Mathematik | en |
| heal.journalType | peer reviewed | - |
| heal.fullTextAvailability | TRUE | - |
| Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά). ΜΑΘ | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Hasanis-2005-Complete minimal hyp.pdf | 70.75 kB | Adobe PDF | View/Open Request a copy |
This item is licensed under a Creative Commons License