Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/12597
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNtouyas, S. K.en
dc.contributor.authorSficas, Y. G.en
dc.contributor.authorTsamatos, P. C.en
dc.date.accessioned2015-11-24T17:22:20Z-
dc.date.available2015-11-24T17:22:20Z-
dc.identifier.issn0022-247X-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/12597-
dc.rightsDefault Licence-
dc.subjectexistenceen
dc.titleBoundary value problems for functional differential equationsen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.secondary<Go to ISI>://A1996UC84700015-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.publicationDate1996-
heal.abstractThis paper is concerned with the existence of solutions of a boundary value problem for second-order functional differential equations. Specifically the following problem is considered: x(n)(t) = f(t, x(t), x'(t)), t is an element of [O, T], alpha(0)x(0) - alpha(1)x'(O) = phi is an element of C-r beta(0)x(T) + beta(1)x'(T) = A is an element of R(n). The results are based on a nonlinear alternative of Granas and the use of a priori bounds on solutions. Some examples are also discussed to illustrate how these results may be used to yield the existence of solutions of specific boundary value problems. (C) 1996 Academic Press, Inc.en
heal.publisherElsevieren
heal.journalNameJournal of Mathematical Analysis and Applicationsen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά). ΜΑΘ

Files in This Item:
File Description SizeFormat 
Tsamatos-1996-Boundary value problems for.pdf189.72 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons