Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/12546
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArora, S.en
dc.contributor.authorKarakostas, G.en
dc.date.accessioned2015-11-24T17:21:57Z-
dc.date.available2015-11-24T17:21:57Z-
dc.identifier.issn0097-5397-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/12546-
dc.rightsDefault Licence-
dc.subjectminimum latency touren
dc.subjecttraveling repairmanen
dc.subjectsearch ratioen
dc.subjectrandomized search ratioen
dc.subjectvehicle routingen
dc.subjectquasi-polynomial approximation schemesen
dc.subjectapproximation algorithmsen
dc.subjecttraveling salesman problemen
dc.titleApproximation schemes for minimum latency problemsen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDoi 10.1137/S0097539701399654-
heal.identifier.secondary<Go to ISI>://000185629400011-
heal.identifier.secondaryhttp://epubs.siam.org/doi/abs/10.1137/S0097539701399654-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικώνel
heal.publicationDate2003-
heal.abstractThe minimum latency problem, also known as the traveling repairman problem, is a variant of the traveling salesman problem in which the starting node of the tour is given and the goal is to minimize the sum of the arrival times at the other nodes. We present a quasi-polynomial time approximation scheme (QPTAS) for this problem when the instance is a weightedtree, when the nodes lie in R(d) for some fixed d, and for planar graphs. We also present a polynomial time constant factor approximation algorithm for the general metric case. The currently best polynomial time approximation algorithm for general metrics, due to Goemans and Kleinberg, computes a 3.59-approximation.en
heal.journalNameSiam Journal on Computingen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά). ΜΑΘ

Files in This Item:
There are no files associated with this item.


This item is licensed under a Creative Commons License Creative Commons