Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/11052Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Akrivis, G. | en |
| dc.contributor.author | Makridakis, C. | en |
| dc.contributor.author | Nochetto, R. H. | en |
| dc.date.accessioned | 2015-11-24T17:02:25Z | - |
| dc.date.available | 2015-11-24T17:02:25Z | - |
| dc.identifier.issn | 0029-599X | - |
| dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/11052 | - |
| dc.rights | Default Licence | - |
| dc.subject | nonlinear parabolic equations | en |
| dc.subject | finite-element methods | en |
| dc.subject | crank-nicolson method | en |
| dc.subject | space | en |
| dc.subject | time | en |
| dc.title | Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence | en |
| heal.type | journalArticle | - |
| heal.type.en | Journal article | en |
| heal.type.el | Άρθρο Περιοδικού | el |
| heal.identifier.primary | DOI 10.1007/s00211-011-0363-6 | - |
| heal.language | en | - |
| heal.access | campus | - |
| heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
| heal.publicationDate | 2011 | - |
| heal.abstract | We unify the formulation and analysis of Galerkin and Runge-Kutta methods for the time discretization of parabolic equations. This, together with the concept of reconstruction of the approximate solutions, allows us to establish a posteriori superconvergence estimates for the error at the nodes for all methods. | en |
| heal.journalName | Numerische Mathematik | en |
| heal.journalType | peer reviewed | - |
| heal.fullTextAvailability | TRUE | - |
| Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Akrivis-2011-Galerkin and Runge-K.pdf | 339.25 kB | Adobe PDF | View/Open Request a copy |
This item is licensed under a Creative Commons License