Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/11033
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Asdre, K. | en |
dc.contributor.author | Nikolopoulos, S. D. | en |
dc.date.accessioned | 2015-11-24T17:02:16Z | - |
dc.date.available | 2015-11-24T17:02:16Z | - |
dc.identifier.issn | 0304-3975 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/11033 | - |
dc.rights | Default Licence | - |
dc.subject | perfect graphs | en |
dc.subject | proper interval graphs | en |
dc.subject | path cover | en |
dc.subject | fixed-endpoint path cover | en |
dc.subject | linear-time algorithms | en |
dc.subject | finding hamiltonian circuits | en |
dc.subject | linear-time recognition | en |
dc.subject | disjoint paths | en |
dc.subject | algorithm | en |
dc.subject | cographs | en |
dc.title | A polynomial solution to the k-fixed-endpoint path cover problem on proper interval graphs | en |
heal.type | journalArticle | - |
heal.type.en | Journal article | en |
heal.type.el | Άρθρο Περιοδικού | el |
heal.identifier.primary | DOI 10.1016/j.tcs.2009.11.003 | - |
heal.language | en | - |
heal.access | campus | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.publicationDate | 2010 | - |
heal.abstract | We study a variant of the path cover problem, namely, the k-fixed-endpoint path cover problem, or kPC for short. Given a graph G and a subset T of k vertices of V(G), a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint paths P that covers the vertices of G such that the k vertices of T are all endpoints of the paths in P. The kPC problem is to find a k-fixed-endpoint path cover of G of minimum cardinality; note that, if T is empty (or, equivalently, k = 0), the stated problem coincides with the classical path cover problem. The kPC problem generalizes some path cover related problems, such as the 1HP and 2HP problems, which have been proved to be NP-complete. Note that the complexity status for both 1HP and 2HP problems on interval graphs remains an open question (Damaschke ( 1993)[9]). In this paper, we show that the kPC problem can be solved in linear time on the class of proper interval graphs, that is, in O(n + m) time on a proper interval graph on n vertices and m edges. The proposed algorithm is simple, requires linear space. and also enables us to solve the 1HP and 2HP problems on proper interval graphs within the same time and space complexity. (C) 2009 Elsevier B.V. All rights reserved. | en |
heal.journalName | Theoretical Computer Science | en |
heal.journalType | peer reviewed | - |
heal.fullTextAvailability | TRUE | - |
Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Asdre-2010-A polynomial solutio.pdf | 1.05 MB | Adobe PDF | View/Open Request a copy |
This item is licensed under a Creative Commons License