Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTzikas, D. G.en
dc.contributor.authorLikas, A. C.en
dc.contributor.authorGalatsanos, N. P.en
dc.rightsDefault Licence-
dc.subjectbayesian approachen
dc.subjectblind image deconvolution (bid)en
dc.subjectinverse problemen
dc.subjectkernel modelen
dc.subjectsparse prioren
dc.subjectstudent-t distributionen
dc.titleVariational Bayesian Sparse Kernel-Based Blind Image Deconvolution With Student's-t Priorsen
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDoi 10.1109/Tip.2008.2011757-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.abstractIn this paper, we present a new Bayesian model for the blind Image deconvolution (BID) problem. The main novelty of this model is the use of a sparse kernel-based model for the point spread function (PSF) that allows estimation of both PSF shape and support. In the herein proposed approach, a robust model of the BID errors and an image prior that preserves edges of the reconstructed image are also used. Sparseness, robustness, and preservation of edges are achieved by using priors that are based on the Student's-t probability density function (PDF). This pdf, in addition to having heavy tails, Is closely related to the Gaussian and, thus, yields tractable inference algorithms. The approximate variational inference methodology is used to solve the corresponding Bayesian model. Numerical experiments are presented that compare this BID methodology to previous ones using both simulated and real data.en
heal.journalNameIeee Transactions on Image Processingen
heal.journalTypepeer reviewed-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

This item is licensed under a Creative Commons License Creative Commons