Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/11024
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tzikas, D. G. | en |
dc.contributor.author | Likas, A. C. | en |
dc.contributor.author | Galatsanos, N. P. | en |
dc.date.accessioned | 2015-11-24T17:02:12Z | - |
dc.date.available | 2015-11-24T17:02:12Z | - |
dc.identifier.issn | 1045-9227 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/11024 | - |
dc.rights | Default Licence | - |
dc.subject | classification | en |
dc.subject | kernel learning | en |
dc.subject | regression | en |
dc.subject | relevance vector machine (rvm) | en |
dc.subject | sparse bayesian learning | en |
dc.subject | relevance vector machine | en |
dc.title | Sparse Bayesian Modeling With Adaptive Kernel Learning | en |
heal.type | journalArticle | - |
heal.type.en | Journal article | en |
heal.type.el | Άρθρο Περιοδικού | el |
heal.identifier.primary | Doi 10.1109/Tnn.2009.2014060 | - |
heal.language | en | - |
heal.access | campus | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής | el |
heal.publicationDate | 2009 | - |
heal.abstract | Sparse kernel methods are very efficient in solving regression and classification problems. The sparsity and performance of these methods depend on selecting an appropriate kernel function, which is typically achieved using a cross-validation procedure. In this paper, we propose an incremental method for supervised learning, which is similar to the relevance vector machine (RVM) but also learns the parameters of the kernels during model training. Specifically, we learn different parameter values for each kernel, resulting in a very flexible model. In order to avoid over-fitting, we use a sparsity enforcing prior that controls the effective number of parameters of the model. We present experimental results on artificial data to demonstrate the advantages of the proposed method and we provide a comparison with the typical RVM on several commonly used regression and classification data sets. | en |
heal.journalName | Ieee Transactions on Neural Networks | en |
heal.journalType | peer reviewed | - |
heal.fullTextAvailability | TRUE | - |
Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Likas-2009-Sparse Bayesian Modeling With Adaptive Kernel Learning.pdf | 1.13 MB | Adobe PDF | View/Open Request a copy |
This item is licensed under a Creative Commons License