Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/11012
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKontogiannis, S. C.en
dc.contributor.authorPanagopoulou, P. N.en
dc.contributor.authorSpirakis, P. G.en
dc.date.accessioned2015-11-24T17:02:06Z-
dc.date.available2015-11-24T17:02:06Z-
dc.identifier.issn0304-3975-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11012-
dc.rightsDefault Licence-
dc.subjectbimatrix gameen
dc.subjectapproximate nash equilibriumen
dc.subjectpointsen
dc.titlePolynomial algorithms for approximating Nash equilibria of bimatrix gamesen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDOI 10.1016/j.tcs.2008.12.033-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.publicationDate2009-
heal.abstractWe focus on the problem of computing an epsilon-Nash equilibrium of a bimatrix game, when epsilon is an absolute constant. We present a simple algorithm for Computing a 3/4-Nash equilibrium for any bimatrix game in strongly polynomial time and we next show 4 how to extend this algorithm so as to obtain a (potentially stronger) parameterized approximation. Namely, we present an algorithm that computes a 2+lambda/4-Nash equilibrium, where lambda is the minimum, among all Nash equilibria, expected payoff of either player. The suggested algorithm runs in time polynomial in the number of strategies available to the players. (C) 2009 Elsevier B.V. All rights reserved.en
heal.journalNameTheoretical Computer Scienceen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Kontogiannis-2009-Polynomial algorithm.pdf453.07 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons