Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/11008
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKampouraki, A.en
dc.contributor.authorManis, G.en
dc.contributor.authorNikou, C.en
dc.date.accessioned2015-11-24T17:02:03Z-
dc.date.available2015-11-24T17:02:03Z-
dc.identifier.issn1089-7771-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11008-
dc.rightsDefault Licence-
dc.subjectfeature extractionen
dc.subjectheartbeat time seriesen
dc.subjectheart rate variability (hrv)en
dc.subjectsupport vector machine (svm)en
dc.subjectrate-variabilityen
dc.subjectidiopathic scoliosisen
dc.subjectrate signalen
dc.subjectdynamicsen
dc.subjectrisken
dc.subjectrecognitionen
dc.subjectalgorithmen
dc.subjectnetworksen
dc.subjectimagesen
dc.subjectbcien
dc.titleHeartbeat Time Series Classification With Support Vector Machinesen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDoi 10.1109/Titb.2008.2003323-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.publicationDate2009-
heal.abstractIn this study, heartbeat time series are classified using support vector machines (SVMs). Statistical methods and signal analysis techniques are used to extract features from the signals. The SVM classifier is favorably compared to other neural network-based classification approaches by performing leave-one-out cross validation. The performance of the SVM with respect to other state-of-the-art classifiers is also confirmed by the classification of signals presenting very low signal-to-noise ratio. Finally, the influence of the number of features to the classification rate was also investigated for two real datasets. The first dataset consists of long-term ECG recordings of young and elderly healthy subjects. The second dataset consists of long-term ECG recordings of normal subjects and subjects suffering from coronary artery disease.en
heal.journalNameIeee Transactions on Information Technology in Biomedicineen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
There are no files associated with this item.


This item is licensed under a Creative Commons License Creative Commons