Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/11004
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGerogiannis, D.en
dc.contributor.authorNikou, C.en
dc.contributor.authorLikas, A.en
dc.date.accessioned2015-11-24T17:01:59Z-
dc.date.available2015-11-24T17:01:59Z-
dc.identifier.issn0262-8856-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11004-
dc.rightsDefault Licence-
dc.subjectimage registrationen
dc.subjectpoint set registrationen
dc.subjectgaussian mixture modelen
dc.subjectmixtures of student's t-distributionen
dc.subjectexpectation-maximization (em) algorithmen
dc.subjectmutual informationen
dc.subjectimage registrationen
dc.subjectalgorithmen
dc.subjectmaximizationen
dc.subjectintensityen
dc.subjectalignmenten
dc.subjectmodelsen
dc.titleThe mixtures of Student's t-distributions as a robust framework for rigid registrationen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDOI 10.1016/j.imavis.2008.11.013-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.publicationDate2009-
heal.abstractThe problem of registering images or point sets is addressed. At first, a pixel similarity-based algorithm for the rigid registration between single and multimodal images is presented. The images may present dissimilarities due to noise, missing data or outlying measures. The method relies on the partitioning of a reference image by a Student's t-mixture model (SMM). This partition is then projected onto the image to be registered. The main idea is that a t-component in the reference image corresponds to a t-component in the image to be registered. If the images are correctly registered the distances between the corresponding components is minimized. Moreover, the extension of the method to the registration of point clouds is also proposed. The use of SMM components is justified by the property that they have heavier tails than standard Gaussians, thus providing robustness to outliers. Experimental results indicate that, even in the case of low SNR or important amount of dissimilarities due to temporal changes, the proposed algorithm compares favorably to the mutual information method for image registration and to the Iterative Closest Points (ICP) algorithm for the alignment of point sets. (C) 2008 Elsevier B.V. All rights reserved.en
heal.journalNameImage and Vision Computingen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Gerogiannis-2009-The mixtures of Stud.pdf1.2 MBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons