Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/10970
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBlekas, K.en
dc.contributor.authorNikou, C.en
dc.contributor.authorGalatsanos, N.en
dc.contributor.authorTsekos, N. V.en
dc.date.accessioned2015-11-24T17:01:44Z-
dc.date.available2015-11-24T17:01:44Z-
dc.identifier.issn0218-2130-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10970-
dc.rightsDefault Licence-
dc.subjectregression mixture modelen
dc.subjectcurve clusteringen
dc.subjectexpectation maximizationen
dc.subjectmarkov random fielden
dc.subjectsmoothness prioren
dc.subjectmaximum-likelihooden
dc.subjectimage-restorationen
dc.subjectcontrast agenten
dc.subjectem algorithmen
dc.subjectsegmentationen
dc.titleA Regression Mixture Model with Spatial Constraints for Clustering Spatiotemporal Dataen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.publicationDate2008-
heal.abstractWe present a new approach for curve clustering designed for analysis of spatiotemporal data. Such data contains both spatial and temporal patterns that we desire to capture. The proposed methodology is based on regression and Gaussian mixture modeling. The novelty of the here in work is the incorporation of spatial smoothness constraints in the form of a prior for the data labels. This allows to take into account the property of spatiotemporal data according to which spatially adjacent data points have higher probability to belong to the same cluster. The proposed model can be formulated as a Maximum a Posteriori (MAP) problem, where the Expectation Maximization (EM) algorithm is used to estimate the model parameters. Several numerical experiments with both simulated data and real cardiac perfusion MRI data are used for evaluating the methodology. The results are promising and demonstrate the value of the proposed approachen
heal.journalNameInternational Journal on Artificial Intelligence Toolsen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)



This item is licensed under a Creative Commons License Creative Commons