Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/10843
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBlekas, K.en
dc.contributor.authorLikas, A.en
dc.contributor.authorGalatsanos, N. P.en
dc.contributor.authorLagaris, I. E.en
dc.date.accessioned2015-11-24T17:00:57Z-
dc.date.available2015-11-24T17:00:57Z-
dc.identifier.issn1045-9227-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10843-
dc.rightsDefault Licence-
dc.subjectcovex quadratic programming (qp)en
dc.subjectexpectation-maximization (em)en
dc.subjectgaussian mixture model (gmm)en
dc.subjectimage segmentationen
dc.subjectmarkov random field (mrf)en
dc.subjectem algorithmen
dc.titleA spatially constrained mixture model for image segmentationen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDoi 10.1109/Tnn.2004.841773-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.publicationDate2005-
heal.abstractGaussian mixture models (GMMs) constitute a well-known type of probabilistic neural networks. One of their many successful applications is in image segmentation, where spatially constrained mixture models have been trained using the expectation-maximization (EM) framework. In this letter, we elaborate on this method and propose a new methodology for the M-step of the EM algorithm that is based on a novel constrained optimization formulation. Numerical experiments using simulated images illustrate the superior performance of our method in terms of the attained maximum value of the objective function and segmentation accuracy compared to previous implementations of this approach.en
heal.journalNameIeee Transactions on Neural Networksen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Lagaris-2005-A spatially constrained mixture model for image segmentation.pdf339.02 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons