Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/10750
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkrivis, G. D.en
dc.contributor.authorDougalis, V. A.en
dc.contributor.authorKarakashian, O. A.en
dc.contributor.authorMcKinney, W. R.en
dc.date.accessioned2015-11-24T17:00:20Z-
dc.date.available2015-11-24T17:00:20Z-
dc.identifier.issn1064-8275-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10750-
dc.rightsDefault Licence-
dc.subjectnonlinear schrodinger equationen
dc.subjectpoint blow-upen
dc.subjectfinite element methodsen
dc.subjectadaptive mesh refinementen
dc.subjectself-focusing singularityen
dc.subjectcritical dimensionen
dc.subjectcauchy-problemen
dc.subjectsimulationen
dc.subjectcollapseen
dc.subjectmediaen
dc.subjectbeamsen
dc.titleNumerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrodinger equationen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDoi 10.1137/S1064827597332041-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.publicationDate2003-
heal.abstractWe consider the initial-value problem for the radially symmetric nonlinear Schrodinger equation with cubic nonlinearity (NLS) in d = 2 and 3 space dimensions. To approximate smooth solutions of this problem, we construct and analyze a numerical method based on a standard Galerkin finite element spatial discretization with piecewise linear, continuous functions and on an implicit Crank-Nicolson type time-stepping procedure. We then equip this scheme with an adaptive spatial and temporal mesh refinement mechanism that enables the numerical technique to approximate well singular solutions of the NLS equation that blow up at the origin as the temporal variable t tends from below to a finite value t(star). For the blow-up of the amplitude of the solution we recover numerically the well-known rate (t(star)- t)(-1/2) for d = 3. For d = 2 our numericalevidence supports the validity of the log log law [ln ln 1/t(star)-t/(t(star)- t)](1/2) for t extremely close to t(star). The scheme also approximates well the details of the blow-up of the phase of the solution at the origin as t --> t(star).en
heal.journalNameSiam Journal on Scientific Computingen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)



This item is licensed under a Creative Commons License Creative Commons