Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/14125
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVoltairas, P. A.en
dc.contributor.authorCharalambopoulos, A.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorMichalis, L. K.en
dc.date.accessioned2015-11-24T17:35:26Z-
dc.date.available2015-11-24T17:35:26Z-
dc.identifier.issn1547-1063-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/14125-
dc.rightsDefault Licence-
dc.subjectarterial pulse modelingen
dc.subjectfluid-structure interactionen
dc.subjectviscoelasticityen
dc.subjectwave propagationen
dc.subjectklein-gordon equationen
dc.subjectvascular diseaseen
dc.subjectnavier-stokes equationsen
dc.subjectblood-flowen
dc.subjectexperimental validationen
dc.subjectviscoelastic behavioren
dc.subjectwave-propagationen
dc.subjectpulsatile flowen
dc.subjectclinical-dataen
dc.subjectshear-stressen
dc.subjectfluidsen
dc.subjectmechanicsen
dc.titleA Quasi-Lumped Model for the Peripheral Distortion of the Arterial Pulseen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDOI 10.3934/mbe.2012.9.175-
heal.identifier.secondary<Go to ISI>://000298892800010-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.publicationDate2012-
heal.abstractAs blood circulates through the arterial tree, the flow and pressure pulse distort. Principal factors to this distortion are reflections form arterial bifurcations and the viscous character of the flow of the blood. Both of them are expounded in the literature and included in our analysis. The nonlinearities of inertial effects are usually taken into account in numerical simulations, based on Navier-Stokes like equations. Nevertheless, there isn't any qualitative, analytical formula, which examines the role of blood's inertia on the distortion of the pulse. We derive such an analytical nonlinear formula. It emanates from a generalized Bernoulli's equation for an an-harmonic, linear, viscoelastic, Maxwell fluid flow in a linear, viscoelastic, Kelvin-Voigt, thin, cylindrical vessel. We report that close to the heart, convection effects related to the change in the magnitude of the velocity of blood dominate the alteration of the shape of the pressure pulse, while at remote sites of the vascular tree, convection of vorticity, related to the change in the direction of the velocity of blood with respect to a mean axial flow, prevails. A quantitative comparison between the an-harmonic theory and related pressure measurements is also performed.en
heal.journalNameMathematical Biosciences and Engineeringen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
There are no files associated with this item.


This item is licensed under a Creative Commons License Creative Commons