Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/14080
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPapacharalampopoulos, A.en
dc.contributor.authorVavva, M. G.en
dc.contributor.authorProtopappas, V. C.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorPolyzos, D.en
dc.date.accessioned2015-11-24T17:35:08Z-
dc.date.available2015-11-24T17:35:08Z-
dc.identifier.issn0001-4966-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/14080-
dc.rightsDefault Licence-
dc.subjecthealing long bonesen
dc.subjectaxial transmissionen
dc.subjectcouple-stressen
dc.subjectmechanical-propertiesen
dc.subjectdynamic-analysisen
dc.subjectdispersionen
dc.subjectsolidsen
dc.subjectbemen
dc.subjectsimulationsen
dc.subjectpredictionen
dc.titleA numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin's Form II gradient elastic theoryen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDoi 10.1121/1.3605566-
heal.identifier.secondary<Go to ISI>://000293866800052-
heal.identifier.secondaryhttp://link.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JASMAN000130000002001060000001-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.publicationDate2011-
heal.abstractCortical bone is a multiscale heterogeneous natural material characterized by microstructural effects. Thus guided waves propagating in cortical bone undergo dispersion due to both material microstructure and bone geometry. However, above 0.8 MHz, ultrasound propagates rather as a dispersive surface Rayleigh wave than a dispersive guided wave because at those frequencies, the corresponding wavelengths are smaller than the thickness of cortical bone. Classical elasticity, although it has been largely used for wave propagation modeling in bones, is not able to support dispersion in bulk and Rayleigh waves. This is possible with the use of Mindlin's Form-II gradient elastic theory, which introduces in its equation of motion intrinsic parameters that correlate microstructure with the macrostructure. In this work, the boundary element method in conjunction with the reassigned smoothed pseudo Wigner-Ville transform are employed for the numerical determination of time-frequency diagrams corresponding to the dispersion curves of Rayleigh and guided waves propagating in a cortical bone. A composite material model for the determination of the internal length scale parameters imposed by Mincllin's elastic theory is exploited. The obtained results demonstrate the dispersive nature of Rayleigh wave propagating along the complex structure of bone as well as how microstructure affects guided waves. (C) 2011 Acoustical Society of America. [DOI: 10.1121/1.3605566]en
heal.publisherAcoustical Society of Americaen
heal.journalNameJournal of the Acoustical Society of Americaen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Papacharalampopoulos-2011-A numerical study on.pdf1.5 MBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons