Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/13726
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKalpakides, V. K.en
dc.contributor.authorMaugin, G. A.en
dc.date.accessioned2015-11-24T17:32:25Z-
dc.date.available2015-11-24T17:32:25Z-
dc.identifier.issn0034-4877-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13726-
dc.rightsDefault Licence-
dc.subjectsymmetriesen
dc.subjectnoether's theoremen
dc.subjectconservation lawsen
dc.subjectconfigurational mechanicsen
dc.subjecthamilton's principleen
dc.subjectthermoelasticityen
dc.subjectenergy-dissipationen
dc.subjectgeneral-relativityen
dc.subjectprincipleen
dc.subjectforcesen
dc.titleCanonical formulation and conservation laws of thermoelasticity without dissipationen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDoi 10.1016/S0034-4877(04)90024-9-
heal.identifier.secondary<Go to ISI>://000222006500005-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.publicationDate2004-
heal.abstractThis work is concerned with the derivation of conservation laws for the Green-Naghdi theory of nonlinear thermoelasticity without dissipation. The lack of dissipation allows for a variational formulation which is used for the application of Noether's theorem. The balance laws on the material manifold are derived and the exact conditions under which they hold are rigorously studied. Also, the relationship with the "classical" theory is examined.en
heal.publisherElsevieren
heal.journalNameReports on Mathematical Physicsen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Kalpakides-2004-Canonical formulation and.pdf1.03 MBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons