Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/13682
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lagaris, I. E. | en |
dc.contributor.author | Likas, A. | en |
dc.contributor.author | Fotiadis, D. I. | en |
dc.date.accessioned | 2015-11-24T17:32:10Z | - |
dc.date.available | 2015-11-24T17:32:10Z | - |
dc.identifier.issn | 0010-4655 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/13682 | - |
dc.rights | Default Licence | - |
dc.subject | neural networks | en |
dc.subject | eigenvalue problems | en |
dc.subject | schrodinger | en |
dc.subject | dirac | en |
dc.subject | collocation | en |
dc.subject | optimization | en |
dc.title | Artificial Neural Network methods in quantum mechanics | en |
heal.type | journalArticle | - |
heal.type.en | Journal article | en |
heal.type.el | Άρθρο Περιοδικού | el |
heal.identifier.secondary | <Go to ISI>://A1997XV31900001 | - |
heal.identifier.secondary | http://ac.els-cdn.com/S0010465597000544/1-s2.0-S0010465597000544-main.pdf?_tid=eac59c8dc37cf320726731f84ebcd814&acdnat=1339758278_d45f17985aa0b867056309c637ea1539 | - |
heal.language | en | - |
heal.access | campus | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικών | el |
heal.publicationDate | 1997 | - |
heal.abstract | In a previous article we have shown how one can employ Artificial Neural Networks (ANNs) in order to solve non-homogeneous ordinary and partial differential equations, In the present work we consider the solution of eigenvalue problems for differential and integrodifferential operators, using ANNs. We start by considering the Schrodinger equation for the Morse potential that has an analytically known solution, to test the accuracy of the method, We then proceed with the Schrodinger and the Dirac equations for a muonic atom, as well as with a nonlocal Schrodinger integrodifferential equation that models the n + alpha system in the framework of the resonating group method, In two dimensions we consider the well-studied Henon-Heiles Hamiltonian and in three dimensions the model problem of three coupled anharmonic oscillators, The method in all of the treated cases proved to be highly accurate, robust and efficient. Hence it is a promising tool for tackling problems of higher complexity and dimensionality. (C) 1997 Elsevier Science B.V. | en |
heal.publisher | Elsevier | en |
heal.journalName | Computer Physics Communications | en |
heal.journalType | peer reviewed | - |
heal.fullTextAvailability | TRUE | - |
Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Lagaris-1997-Artificial Neural Ne.pdf | 828.95 kB | Adobe PDF | View/Open Request a copy |
This item is licensed under a Creative Commons License