Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/13662
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKatsis, C. D.en
dc.contributor.authorKatertsidis, N. S.en
dc.contributor.authorFotiadis, D. I.en
dc.date.accessioned2015-11-24T17:32:03Z-
dc.date.available2015-11-24T17:32:03Z-
dc.identifier.issn1746-8094-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13662-
dc.rightsDefault Licence-
dc.subjectanxiety disordersen
dc.subjectbiosignal processingen
dc.subjectwearable devicesen
dc.subjectfacial expressionsen
dc.subjectemotion recognitionen
dc.titleAn integrated system based on physiological signals for the assessment of affective states in patients with anxiety disordersen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDOI 10.1016/j.bspc.2010.12.001-
heal.identifier.secondary<Go to ISI>://000293480100007-
heal.identifier.secondaryhttp://ac.els-cdn.com/S1746809410000911/1-s2.0-S1746809410000911-main.pdf?_tid=9eb6e80733c3b10c07f058920d1a1c51&acdnat=1339758044_757f3d7ff5c6c7631443cd16401c70a2-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.publicationDate2011-
heal.abstractAnxiety disorders are psychiatric disorders characterized by a constant and abnormal anxiety that interferes with daily-life activities. Their high prevalence in the general population and the severe limitations they cause have drawn attention to the development of new and efficient strategies for their treatment. In this work we describe the INTREPID system which provides an innovative and intelligent solution for the monitoring of patients with anxiety disorders during therapeutic sessions. It recognizes an individual's affective state based on 5 pre-defined classes (relaxed, neutral, startled, apprehensive and very apprehensive), from physiological data collected via non-invasive technologies (blood volume pulse, heart rate, galvanic skin response and respiration). The system is validated using data obtained through an emotion elicitation experiment based on the International Affective Picture System. Four different classification algorithms are implemented (Artificial Neural Networks, Support Vector Machines, Random Forests and a Neuro-Fuzzy System). The overall classification accuracy achieved is 84.3%. (C) 2010 Elsevier Ltd. All rights reserved.en
heal.publisherElsevieren
heal.journalNameBiomedical Signal Processing and Controlen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Katsis-2011-An integrated system.pdf1.12 MBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons