Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/13641
Full metadata record
DC FieldValueLanguage
dc.contributor.authorExarchos, T. P.en
dc.contributor.authorTzallas, A. T.en
dc.contributor.authorBaga, D.en
dc.contributor.authorChaloglou, D.en
dc.contributor.authorFotiadis, D. I.en
dc.contributor.authorTsouli, S.en
dc.contributor.authorDiakou, M.en
dc.contributor.authorKonitsiotis, S.en
dc.date.accessioned2015-11-24T17:31:55Z-
dc.date.available2015-11-24T17:31:55Z-
dc.identifier.issn0010-4825-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13641-
dc.rightsDefault Licence-
dc.subjectparkinson's diseaseen
dc.subjectsymptom predictionen
dc.subjectpartial decision treesen
dc.subjectassociation rulesen
dc.subjectquality-of-lifeen
dc.subjectquantificationen
dc.subjectbradykinesiaen
dc.subjectsystemen
dc.titleUsing partial decision trees to predict Parkinson's symptoms: A new approach for diagnosis and therapy in patients suffering from Parkinson's diseaseen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDOI 10.1016/j.compbiomed.2011.11.008-
heal.identifier.secondary<Go to ISI>://000300651000007-
heal.identifier.secondaryhttp://ac.els-cdn.com/S0010482511002277/1-s2.0-S0010482511002277-main.pdf?_tid=aefacf8c9a276505d0ca16ffe24d2ce5&acdnat=1339756644_ac43bbc56ef9d1fb7ad0681bea795b0c-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.publicationDate2012-
heal.abstractIn this work we present a method based on partial decision trees and association rules for the prediction of Parkinson's disease (PD) symptoms. The proposed method is part of the PERFORM system. PERFORM is used for the treatment of PD patients and even advocate specific combinations of medications. The approach presented in this paper is included in the data miner module of PERFORM. A patient performs some initial examinations and the module predicts the future occurrence of the symptoms based on the initial examinations and medications taken. Using the method, the expert can prescribe specific medications that will not cause, or postpone the appearance of specific symptoms to the patient. The approach employed is able to provide interpretation for the predictions made, by providing rules. The models have been developed and evaluated using real patient's data and the respective results are reported. Another functionality of the data miner module is the extraction of rules through a user friendly interface using association rule mining algorithms. These rules can be used for the prediction analysis of patient's reaction to certain treatment plans. The accuracy of the symptoms' prediction ranges from 57.1 to 77.4%, depending on the symptom. (C) 2011 Elsevier Ltd. All rights reserved.en
heal.publisherElsevieren
heal.journalNameComput Biol Meden
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Exarchos-2012-Using partial decisi.pdf357.04 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons