Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/13568
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKalpakides, V. K.en
dc.contributor.authorBalassas, K. G.en
dc.date.accessioned2015-11-24T17:31:17Z-
dc.date.available2015-11-24T17:31:17Z-
dc.identifier.issn1478-6435-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/13568-
dc.rightsDefault Licence-
dc.subjecthyperelastostatic fracture-mechanicsen
dc.subjectmaterial settingsen
dc.subjectmaterial forcesen
dc.subjectcontinuum-mechanicsen
dc.subjectale formulationen
dc.titleThe inverse deformation mapping in the finite element methoden
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDoi 10.1080/14786430500363767-
heal.identifier.secondary<Go to ISI>://000234481100022-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Επιστήμης Υλικώνel
heal.publicationDate2005-
heal.abstractThis paper aims at the exploitation of material forces to find an optimum mesh in the finite element method (FEM). The classical variational formulation provides the linear momentum equation in a Lagrangian description. A variational setting for the derivation of the canonical momentum equation in the Eulerian description is presented. The latter is based on an extremum principle for the total potential energy functional defined in terms of the inverse deformation function. This constitutes a theoretical framework which allows the formulation of the finite element method for the canonical momentum equation as well as the computation of the material forces arising from the discretization. Thus,, apart from the finite element solution for the standard boundary value problem of elastostatics, a second one for the canonical momentum equation can be formulated and solved numerically. The former provides an optimum deformation by minimizing the standard total potential energy, namely solving the physical forces equilibrium equation. The latter provides an optimum discretization by minimizing the total potential energy in terms of the inverse deformation function, that is, solving the material force equilibrium equation. The latter provides an optimum discretization by minimizing the total potential energy in terms of the inverse deformation function, that is, solving the material forces equilibrium equation. The theoretical considerations are supported by providing a computational example.en
heal.publisherTaylor & Francisen
heal.journalNamePhilosophical Magazineen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Kalpakides-2007-The in.pdf204.35 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons