Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/11367
Full metadata record
DC FieldValueLanguage
dc.contributor.authorΚουμανάκος, Ευάγγελοςel
dc.contributor.authorKotsiantis, S.en
dc.contributor.authorTzelepis, D.en
dc.contributor.authorTampakas, V.en
dc.date.accessioned2015-11-24T17:05:43Z-
dc.date.available2015-11-24T17:05:43Z-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11367-
dc.rightsDefault Licence-
dc.titlePredicting fraudulent financial statements with machine learning techniquesen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.secondary<Go to ISI>://000238053100061-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Οικονομικών και Κοινωνικών Επιστημών. Τμήμα Οικονομικών Επιστημώνel
heal.publicationDate2006-
heal.abstractThis paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. This study indicates that a decision tree can be successfully used in the identification of FFS and underline the importance of financial ratios.en
heal.journalNameAdvances in Artificial Intelligenceen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΟΕ

Files in This Item:
File Description SizeFormat 
Koumanakos-2006-Predicting fraudulent financial.pdf189.77 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons