Please use this identifier to cite or link to this item:
https://olympias.lib.uoi.gr/jspui/handle/123456789/11367
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Κουμανάκος, Ευάγγελος | el |
dc.contributor.author | Kotsiantis, S. | en |
dc.contributor.author | Tzelepis, D. | en |
dc.contributor.author | Tampakas, V. | en |
dc.date.accessioned | 2015-11-24T17:05:43Z | - |
dc.date.available | 2015-11-24T17:05:43Z | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | https://olympias.lib.uoi.gr/jspui/handle/123456789/11367 | - |
dc.rights | Default Licence | - |
dc.title | Predicting fraudulent financial statements with machine learning techniques | en |
heal.type | journalArticle | - |
heal.type.en | Journal article | en |
heal.type.el | Άρθρο Περιοδικού | el |
heal.identifier.secondary | <Go to ISI>://000238053100061 | - |
heal.language | en | - |
heal.access | campus | - |
heal.recordProvider | Πανεπιστήμιο Ιωαννίνων. Σχολή Οικονομικών και Κοινωνικών Επιστημών. Τμήμα Οικονομικών Επιστημών | el |
heal.publicationDate | 2006 | - |
heal.abstract | This paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. This study indicates that a decision tree can be successfully used in the identification of FFS and underline the importance of financial ratios. | en |
heal.journalName | Advances in Artificial Intelligence | en |
heal.journalType | peer reviewed | - |
heal.fullTextAvailability | TRUE | - |
Appears in Collections: | Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΟΕ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Koumanakos-2006-Predicting fraudulent financial.pdf | 189.77 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License