Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/11213
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsoulos, I. G.en
dc.contributor.authorΣταυρακούδης, Αθανάσιοςel
dc.date.accessioned2015-11-24T17:04:41Z-
dc.date.available2015-11-24T17:04:41Z-
dc.identifier.issn0096-3003-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/11213-
dc.rightsDefault Licence-
dc.subjectglobal optimizationen
dc.subjectparticle swarm optimizationen
dc.subjectstochastic methodsen
dc.subjectstopping rulesen
dc.subjectparticle swarm optimizationen
dc.subjectdifferential evolutionen
dc.subjectmultimodal functionsen
dc.subjecteconomic-dispatchen
dc.subjectgenetic algorithmen
dc.subjectelectromagneticsen
dc.subjectgenerationen
dc.subjectpoweren
dc.titleEnhancing PSO methods for global optimizationen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDOI 10.1016/j.amc.2010.04.011-
heal.identifier.secondary<Go to ISI>://000278542800020-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Οικονομικών και Κοινωνικών Επιστημών. Τμήμα Οικονομικών Επιστημώνel
heal.publicationDate2010-
heal.abstractThe Particle Swarm Optimization (PSO) method is a well-established technique for global optimization. During the past years several variations of the original PSO have been proposed in the relevant literature. Because of the increasing necessity in global optimization methods in almost all fields of science there is a great demand for efficient and fast implementations of relative algorithms. In this work we propose three modi. cations of the original PSO method in order to increase the speed and its efficiency that can be applied independently in almost every PSO variant. These modi. cations are: (a) a new stopping rule, (b) a similarity check and (c) a conditional application of some local search method. The proposed were tested using three popular PSO variants and a variety test functions. We have found that the application of these modi. cations resulted in significant gain in speed and efficiency. (C) 2010 Elsevier Inc. All rights reserved.en
heal.journalNameApplied Mathematics and Computationen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά) - ΟΕ

Files in This Item:
File Description SizeFormat 
Stavrakoudis-2010-Enhancing PSO methods.pdf224.92 kBAdobe PDFView/Open    Request a copy


This item is licensed under a Creative Commons License Creative Commons