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ABSTRACT

Petros Karvelis, S. M.
PhD, Department of Computer Science, University of loannina, Greece, 2012.
Title: Multichannel Chromosome Image Analysis

Supervisor: Prof. Aristidis Likas.

The study of chromosomes is one of the major areas of study for modern genetics
because the chromosomes are the carriers of all the genetic material (DNA) of an organism
that are transferred from generation to generation by means of reproduction. The assignment
of each chromosome to each class from a chromosome image takes time and demands great
experience to avoid mistakes that can lead to misdiagnosis. For this reason there have been
developed algorithms for image processing and automated analysis of chromosomes.

There are several methods and techniques for the cultivation of chromosomes each of
which leads to a different type of image. For example, if the chromosomes are cultured
according to the protocol G-Banding the resulting image is a gray level image. In this thesis
we deal with M-FISH protocol which leads to a multichannel image (6 channels). In this
technique the biological experiment has been constructed so that each of the 24 chromosome
types (1-22, X, Y) would be reflected in a different color.

The purpose of this thesis is the identification and classification of human chromosomes
from multichannel M-FISH images. Initially, we developed a method based on the Watershed
transform for the region segmentation (grouping pixels with similar characteristics) of
chromosomes. The Watershed transform requires a measure of separability between similar
areas and for this reason we chose to calculate the multichannel gradient. In this way we
achieve a clear separation between areas with different color corresponding to a different
chromosome class. The segmentation results are quite satisfactory compared to other methods

reported in the literature on the same M-FISH basis images.
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After segmentation we perform region classification using a statistical classifier that
employs the Bayes rule. This classifier is simple to develop and implement and provides
satisfactory classification performance. Compared with existing approaches that use Pixel by
Pixel classification the proposed region-based method showed better results. We also study
the effectiveness image smoothing using Vector Median Filtering and its variants and provide
comparative experimental results.

One of the problems in the chromosome classification methodologies using multi-
channel M-FISH images is the fact that they demand a labeled training set to build the
classifier. For example a Bayes classifier requires estimating the parameters such as mean and
covariance for each of the 24 chromosomes classes. The existence of a methodology that does
not require a labeled training set is therefore essential. Such an unsupervised methodology is
presented in this thesis. First, we segment the M-FISH image using the Watershed transform
to remove the background. Then we estimate which of the remaining pixels have been
hybridized or not using the EM algorithm in each of the 5 channels of the image. Then we use
a Gaussian Mixture Model to classify each pixel into one of the 24 classes of chromosomes.
To build this model for the first time we exploit prior information about which chromosome
class emits to each of the five channels. The adaptation of the parameters of Gaussian Mixture
Model by using the Maximum a Posterior Expectation Maximization method (MAP EM)
results in an increase in the rate of correct classification. It is noteworthy that the proposed
unsupervised methodology achieves higher classification rates when compared to supervised
classification methodologies.

One of the problems for automatic chromosome segmentation methods is the problem
of the occlusion of chromosomes. In particular, two important factors influencing the
segmentation are the following:

* Chromosomes that overlap with one another,

* Chromosomes which adjoin one another.

We have developed a method that addresses both these problems successfully. Initially
we apply a recursive Watershed transform to get an initial assessment of areas of
chromosomes. Then for each area of the Watershed transform we determine high curvature
points around the perimeter of the chromosomal region. From these points will begin a
gradient path which crosses the region and separates the chromosome region where two
chromosomes are tangent to each other. If two or more chromosomes overlap each other, then
the path splits the chromosomes into pieces. Then we form the Region Adjacency Graph and

X



categorize each area using a region Bayes classifier. If a pair of neighboring regions shares
the same class then they are joined together. The method was tested on chromosome images
and the success rate of the method was satisfactory. In addition we compared the method with
other segmentation methodologies such as the pale paths and the results were much better,

especially for the case of overlapping chromosomes.
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EKTENHX ITEPIAHYH XTA EAAHNIKA

[Tétpog KapPéing tov Zravpov kat tng Mapioc.
Awdaktopikd Aimhopa, Tunua [Minpogopikng, [avemoto loavvivov, 2012.
Tithog: Avaivon [oAvkavaiikdv Ewovov Xpoposoudtov

EmpArérovrag: Apioteiong Avkag.

H pedém tov ypopocopdtov arotelel Evav and toug onUavTIKOTEPOVS TOUEIS LEAETNG
vt ovyypovn [evetikn S10TL T0 YPOUOGHOUATO ATOTEAOVY TOVG POPEIS GAOV TOL YEVETIKOD
vikov (DNA) evog opyaviopov mov petafifalovior amd yevid o€ yevid pe tnv Ponfeta g
avaropoyoyns. To ypopocOUOTe ovikKouv o€  kKotnyopieg Kot m  avdBeon kabe
YPOUOCAOUATOG GTNV KATNYopio TOL amd o EIKOVO XPOUOCOUATOV amolTel xpOVO AL Kot
HEYOAN eumelpio yuoo TV amoeLYN AAB®OV TOL UTOPOLV VO O0ONYHGOLV GE EGQPUAUEVT
owyvoon. o to Adyo avtd avamtvydnkov teyvikés yu v enegepyacio Kot avdivon
EKOVOV YPOUOCOUATOV KOL TOV AVTOUOTO YOPUKTNPIOUO TOVC.

Yrépyovv apKeTol TPOTOL Kot TEXVIKEG Yo TV KOAMEPYELN TOV YPOUOCOUATOV 1 KAOE
P oamd TG omoieg odnyel Kol G€ JPOPETIKO TUTO €wovag. o mapddetypo ov to
YPOUHOCOUATO KoAAepynOovv odupmva pe 10 mpwTokoAAo G-Banding mn e€wdva mwov
TPOKLTTEL €lval o YKpl (grey-scale) ewcovo. v mapodoa SoTpiPr] aoyoAOVUACTE LE TO
npwtékorro M-FISH 1o omoio odnyel oe pi moAvkovaAikn ewova (6 Kovoaldv). Xty
TEYVIKN OLTH TO Proroyikd melpopa £yl KaTaokevootel £Tol ®ote N kdBe (o amd 115 24
katnyopieg ypopocopatov (1-22,X,Y) va amotun®veTol Le S1opOPETIKO YPDLLOL.

AvTiKeipevo TG mopovcos STpPnie eivarl 1 avayvopion Kol KoTnyoplomoinorn tov
avOpornivov ypopocoudtov arnd molvkovaiikés eikoveg M-FISH. Apywd avortdéape po
puébodo Paciopévn otov petaoynuatiopd Watershed yio v xatdtunon (opodomoinon
EIKOVOOTOWEI®V HE TOPOHOLD YOPOKTNPLOTIKA) TOV YpOHocOudTtov o meployés. O
petooynuotiopog Watershed amattet £vo pétpo dtoywplonuotnTag HETAED OUOLOV TEPLOYDV

Kot YU auTo T0 AOY0 emMAEEAUE TOV VTOAOYIGUO TNG TOAVKAVOAIKTG Tapaydyov. Mg autd Tov
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TPOTo ££00POMEETOL O COPNG JYWPIGUOC HeTAED TEPLOYDV HE OLUPOPETIKO YPDOHO KOl
emmAéov agaipovpe to vrdPfabpo (background). To omoteAéopota ™ KotdTunong ival
OPKETA IKOVOTOMTIKA GLYKPIVOUEVA HE avTd TG PipAoypaeiag yio tnv 0o Bdon eikoOvev
M-FISH.

[Noa mv tawoéunon kdabe meployng YPNOUOTOMGAUE £VAV CTOTIOTIKO TOEVOUNTY
Baciouévo otov kavova tov Bayes. O ta&ivountg avtdg eivar amhdg otnv VAOTOINGT TOL Kot
&xel ypnoomrom el Ko o€ AALEC PEAETES. e oUYKPLoN Ue MO VTApyovoes pebodoroyiec ot
omoieg ypnoyomolovv Pixel by Pixel katnyopromoinon n pébodog pag (mov Paciletonr oe
tavounon TEPLOY®V)  EUEAvice  kaAvtepo  amoteAéopota. Téhog, pehetodue Vv
amoTELECUATIKOTNTO TOV GIATpOV dtovocpatikod oapécov (Vector Median Filtering) ko
TOPOALAYDV TOV EGV EQAPHOGTOVV GTNV EKOVA TPV TNV TaStvounon. H anoteleopotikotra
TV eIATpov Alopécov eEetdletar cuyKpivovtag To m0c00Td GOOTNG TASIVOUNGNS TPV Kot
LETE TNV XPNOT TOV GIATPOV QLTAOV.

‘Eva and ta mpoPfAnuota mov gppavifovv OAeg ot pebodoroyiec katnyopromoinong
YPOUOCOUATOV and molvkavoAlkég eikovec M-FISH eivon 1 mpodmdBeon dmapéng evog
GLUVOAOL EKTTOUOEVONG Y10l TNV EKTOUOEVOT TOV TOEIWVOUNTY. ZTNV TEPIMTOON Y10 TOPBEOELY LA
evog taSvounty| Bayes amotteiton 1 extipnon tov Tapopétpov Ommg e LEGNS TIUNG Kol TOV
wivaxko cvoppetafAntoétrag yoo Kabe po omd 11g 24 Katnyopieg ypopocopdtov. H dmapén
pog peBoodoroyiog mwov Ba eivar aveEdptnn amd 10 GHVOLO EKTOIOEVONG TOV EMAEYOVE EXEL
onuovtiky a&la. Mia tétoln pebodoroyia mapovcidletor oty SwTpPn avth. Apykd
Aappévoope o katdtunon g ewovag M-FISH pe v ypnon g pebodoroyiag Watershed
(amopakpivovtag 10 VIOPadpo) Kot KOTOTY EKTILOVUE TTOW0, OO TO EIKOVOCTOLXEID £XOUV
vBpdomomOei N Gyt pe v ypnon tov aryopibuov EM ce kabe éva and ta 5 kavdiio g
EIKOVOG LOG. TNV GLVEYELD XPNOLOTO0VHE Eva ToAvKavaAlkd Gaussian Mixture Model ya
Vv Katnyoplonoinon kébe gikovootoryeiov oe o amd 11 24 Katnyopieg YpOUOCOUATOV.
270 HOVTEAO OTO YPNOULOTOIEITOL Y10 TPDTH POPA EK TMV TPOTEPWV TANPOPOPIL. CYETIKA LUE
TO 0€ MO0 KavOAM ekméumel kabe xatnyopio ypoposouatoc. H mepartépo exmaidgvon tov
nopopétpov tov Gaussian Mixture Model and tov aiyopiuo Maximum A Posterior
Expectation Maximization (MAP EM) emtpémer v adénomn Tov mTOGOGTOV GCWOGTNG
katnyopomoinong. H peBodoroyia avtn emtuyydvel akdun KaAHTepa TOCOGTH GLYKPIVOUEVN
axoun pe pebodoroyieg ta&vounong pe enifreyn.

A0 onuavtikol Topdyovtes ennpealovy TNV KATATUNGT TOV EIKOVOV YPOUOCHOUATOV
Kot gfvon ot €€g
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*  XpOUOCOUOTO TOV EMKAADTTOVV TO £VaL TO GAAO,
*  XpOUOGOUATO TOV EPATTOVIOL TO £VOL GTO GALO.

[Tpoteivoupe po péBodo mov avtipeTomilel kol To Vo aVTE TpoPAfHaTe pe emtTvyia.
Apyca epappolovpe Evay emavainmtikd petacynuatiopd Watershed dote va mapovpe o
OPYIKN EKTIUNGCT TOV TEPLOYDV TOV YPOUOCOUATOV. XTNV GLVEXEW gviomilovpe omueia
VYNANG KOPTOONG TV GTNV TEPIUETPO TNG YPWOUOCOUATIKNG TEPLOYNG. ZEKIVAOVTOS AT TO
onueia avtd, Oa dnpovpyovue éva povoratt tapaydyov (Gradient Path) to omoio dwaoyilet
TNV TEPLOYN XPWOUOCOUATOS Kot doympilel v meployn 6tav dV0 YPOUOCMOUATH EPATTOVTOL
T0 €v0. 6TO GALO. AV VO 1] KOt TEPIGGOTEPQ YPOUOCHUOTO EXKAADTTOVTOL TOTE TO LOVOTATL
oympilel 6 OVO TUNUOTO TNV TEPLOYY] TOV YPOUOCOUATOV. XNV GLVEXELWD oynuatilovpe
Tov ypagpo yerrviaong mepoywv (Region Adjacency Graph) xor xkotnyoplomotovpe kdébe
wepoyn kévovtag ypnon evog ta&wvountn mepoydv Bayes. e kdBe Cevyog yertovikav
TEPOYDOV TOV £YOVV TNV 101 Kartnyopio evdvovpe TG dV0 OVTEC TEPLOYEG. ZVYKPLTIKA
amoteléopato pe GAleg peBodovg deiyvouv v avmtepdtnTa TG HEBOSOL 1Waitepa otV

TEPIMTOOT TOV EMKOAVTTOUEVOV YPDOUOCOUATOV.
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1.1 Multichannel Chromosome Images

Chromosomes are the structures in cells that contain genetic information [1]. The study of
chromosomes is made possible by staining techniques since chromosomes are colorless.
Usually, a dye is applied during cell division by a solution of colchicine. Thus the
chromosomes are colored and can be captured by a microscope producing an image. The
images of these chromosomes contain significant information about the health of an
individual. Chromosome images are useful for diagnosing genetic disorders and for studying
various diseases, such as cancer.

Normally, the procedure of assigning each chromosome to a class (karyotyping) is
based on the visual scanning of chromosome images by experts (biologists, cytogeneticists).
This manual process of locating, classifying, and evaluating the chromosomes in these images
could be lengthy and tedious. Thus a need for automated methods that could classify each
chromosome to each class naturally arises.

The whole process can be divided in two main stages:



a) Segmentation: grouping the pixels of the multichannel chromosome image into
two different classes; the chromosomes and the background. This is not a trivial
task since chromosomes are not always clearly visible in the chromosome image
due a number of parameters of the biological experiment [2].

b) Classification: classifying each chromosome to 1-24 classes (1,...,22,X,Y).
Usually such methods extract features for each chromosome of the image such
as the length, color, geometry etc. and a classifier assigns them into one of the
24 chromosome classes.

However, if the classification method requires a training set (supervised
classification) there is no guarantee that the set would be a representative one
containing sufficient training pixels of each class [2].

Furthermore, for the unsupervised type of classification, two main problems
have to be overcome. First the number of classes (K =24) is large and second
how to define a proper initialization of the clusters which represent each
chromosome class.

Another major problem for chromosome images is the fact that chromosomes could
overlap or at least partially occlude each other. Thus segmentation and classification in the
overlap areas could fail unless a dedicated procedure for this type of problem is used.

Next, we introduce the multichannel chromosome images and provide specific details
for the procedure concerning the production these types of images. Different staining
techniques allow analysis of different kinds of abnormalities. Table 1.1 presents the most
popular chromosome imaging staining techniques. In the mid-1990’s, a new technique for
staining chromosomes was introduced. It produced an image in which each chromosome type
appears to have a distinct color [3], [4]. This multi-spectral staining technique made the
analysis of chromosome images easier, not only for visual inspection, but also for computer
analysis of the images. This multichannel staining technique is called M-FISH (Multiplex
Fluorescence In-Situ Hybridization). M-FISH uses five color dyes that attach to various
chromosomes differently to produce a multichannel image. Also a DNA stain called DAPI
(4°, 6-Diamidino-2-phenylindole) attaches to DNA and thus labels all chromosomes. An

example of an M-FISH image is shown in Figure 1.1.



(2
Figure 1.1: An M-FISH image with its channels. (a) Channel 1, (b) Channel 2, (¢) Channel 3,

(d) Channel 4, (e) Channel 5, (f) Channel 6.



Table 1.1: Different chromosome staining techniques.

Researcher Method Year Tpre: O(gulcn;g Bes
Arrighi et al. [5] C-banding 1971 Greyscale
Sumner et al. [6] G-banding 1971 Greyscale
Bauman et al. [7] FISH 1980 Multicolor

Speicher et al. [3] M-FISH 1996 Multicolor
Schrock et al. [4] SKY 1996 Multicolor

The combinations of the five fluorophores that are used to label each class of

chromosomes are shown in the Appendix A for three different M-FISH fluorophore sets.

However, these tables are somewhat of an oversimplification because, in practice, fluorophore

absorption is hardly binary. Table 1.2 shows the actual mean values of pixels of each class

from a real set of M-FISH images.

This new imaging technique introduces several advantages:
Chromosome classification is simplified [3], [8]. Only the spectral information from
the multispectral image is used and no features such as length, centromere position
and band pattern are used.
Subtle chromosomal aberrations are detected [9]. Traditional monochrome imaging
techniques failed to detect rearrangements of genetic material such as the translocation
of telemetric chromatin, because it is difficult to detect them with banding alone. M-
FISH (color karyotyping) is able to sufficiently depict these anomalies.
It can be used for the identification of small genetic markers that remain elusive after
banding [10].
Chromosome aberrations are more easily detected in M-FISH. For a normal cell, all
the pixels in each chromosome should be represented with one identical color.
However, for a cancerous cell, different colors might show up in a chromosome as a
result of the chromosomal rearrangements or the exchange of DNA material between
chromosomes. An example of two chromosome abnormalities using grayscale and M-
FISH technique is shown in Figure 1.2. One might be confused searching for the
abnormality of the extra DNA material of chromosome 6 attached to chromosome 9

Figure 1.2(a). In Figure 1.2(b) the extra DNA material of chromosome 9 attached to



chromosome 14 is shown with different colors on the M-FISH image. By looking at
the M-FISH image, even a non-expert can easily determine the chromosome

abnormalities by searching for chromosomes with two colors.

Table 1.2: Average fluorophore magnitude for each class from a real set of M-FISH images.
Bold denotes the classes to which each fluorophore is predicted to bind.

M-FISH
Channels
Chromosome

G| e | Speen e as | oss
1 0.5483 0.2946 0.4928 0.5171 0.2554
2 0.4681 0.3596 0.4117 0.4311 0.4978
3 0.5059 0.4549 0.3350 0.5200 0.3434
4 0.5852 0.3447 0.3882 0.5119 0.3041
5 0.5372 0.4523 0.5299 0.3077 0.3114
6 0.5390 0.2577 0.5019 0.4823 0.3469
7 0.3244 0.2560 0.5794 0.6313 0.2453
8 0.8027 0.2842 0.3140 0.3034 0.2304
9 0.6379 0.4764 0.3160 0.2863 0.3796
10 0.3563 0.2809 0.3219 0.6858 0.4257
11 0.5913 0.4987 0.2877 0.4994 0.2066
12 0.3127 0.2479 0.7338 0.3297 0.3945
13 0.6590 0.5828 0.3083 0.2367 0.1849
14 0.3266 0.2946 0.7695 0.3396 0.2279
15 0.2590 0.5066 0.6101 0.4857 0.1936
16 0.6752 0.2025 0.6194 0.2544 0.1698
17 0.3739 0.2928 0.3339 0.7386 0.2823
18 0.6085 0.5011 0.5353 0.2151 0.1576
19 0.2917 0.6466 0.3369 0.5539 0.2019
20 0.2746 0.8125 0.3551 0.2596 0.1988
21 0.5994 0.3411 0.3636 0.3547 0.4403
22 0.2603 0.4837 0.5860 0.4697 0.3041
X 0.4014 0.5829 0.3966 0.3793 0.3913
Y 0.6486 0.2267 0.2274 0.5492 0.3632
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(a) ()
Case A: translocation Case B: translocation
between chromosomes 6 | between chromosomes 9
and 9. and 14.

Figure 1.2: Chromosome abnormalities depicted using two different staining techniques: (a)
Giemsa grayscale banding, and (b) M-FISH image.

Finally, chromosome analysis is the procedure for detecting genetic abnormalities in
cells. Traditionally, cells are classified according to their karyotype, which is a tabular array
where the chromosomes are aligned in pairs. Karyotyping is a useful tool to detect deviations
from normal cell structure since abnormal cells may have an excess or a deficit of
chromosomes [8]. Normal cells contain 46 chromosomes which consist of 22 pairs of similar,
homologous chromosomes and two sex-determinative chromosomes (XY: male and XX:

female). An example of a karyotype is shown in Figure 1.3.

(b)

Figure 1.3: (a) M-FISH chromosome image of a woman missing one chromosome from class
13, and (b) karyotype of the M-FISH image: 45 XX -13 (A female karyotype (XX) where one
chromosome of class 13 is missing thus the number of the chromosomes are 45.).



1.2 M-FISH Image Database
The ADIR M-FISH chromosome image database consists of 200 multispectral images having
dimension 517 x 645 pixels. In this database, there is no annotation for 17 images which are
reported as “difficult to karyotype”. These images were also extremely difficult to karyotype
even by experienced cytogeneticists due to tightly packed chromosomes. The database
contains five-channel image sets recorded at different wavelengths. In addition, a DAPI image
file is included for each M-FISH image. The specimens were prepared with probe sets from
four different laboratories:

e Applied Spectral Imaging (Migdal HaEmek, Israel),

e Advanced Digital Imaging Research (ADIR; League City, Texas, USA),

e Cytocell Technologies (Cambridge, UK), and

e Vysis (Downers Grove, IL, USA).

Three different probe sets (ASI, PSI and Vysis, Appendix A) were used in order to

produce M-FISH images. Different wavelengths for each M-FISH image channel were used.
The labeling charts for each chromosome are described presented Appendix A. Figure 1.4,

presents the different wavelengths that were used for each probe set.

Green Yellow Cy5
(523) (575)  (575)
T.Red Cy5.5
(615)  (615)
(a)
DEAC FITC 568 Cy5
(523) (495) (568) (575)
532
(532)
Aqua Green Gold Far Red
(523) (568) (575)
Red
(532)
(c)

Figure 1.4: The different wavelengths used for each probe set. (a) ASI kit, (b) PSI kit, and (c)
Vysis kit.



The ADIR dataset includes also a classification map, stored as an image file established
by experienced cytogeneticists. This image is labeled so that the grey level of each pixel
represents its class number (chromosome class). In addition, background pixels are labeled 0,
and pixels in a region of overlap are labeled -1. This data file serves as “ground truth” to test
the accuracy of the M-FISH image segmentation and classification methods. An example of

the ground truth for an M-FISH image is shown in Figure 1.5(c).

(b) (c)
Figure 1.5: The annotation of each M-FISH image of the ADIR database. (a) The M-FISH
image, (b) the greyscale annotated image, each pixel is represented with grey level intensity
equal to the number of the class which it belongs to and (c) the color coded annotated image
were each color represents a chromosome class.

1.3 M-FISH Image Segmentation and Classification

1.3.1 M-FISH Image Segmentation
Image segmentation is used to define a partition of image pixels into clusters (groups) that

share similar characteristics. The common characteristic used as basis for the segmentation
8



could be a simple pixel property such as grey level or color. However, an image can also be
segmented according to more complex characteristics such as texture features (for reviews of
the subject see [11]).

One way of defining image segmentation is as follows [12]. Formally, a set of regions

{Rl, R,,..., Rn} is a segmentation of the image R into N regions if:

. U, R =R,
2. RNR =9, i=k,
3. R isconnected, i =1,...,n,

Segmenting an M-FISH chromosome image into background and chromosome pixels is
not a straightforward task since the image consists of six image channels where each
chromosome class appears differently in each of the channels. The goal of a segmentation
method is to develop an algorithm such that its input will be the M-FISH image and its output

will be a set of regions where each region will contain the pixels of a chromosome. An

example of a manual segmentation of an M-FISH image is shown below:

(a) (b)

Figure 1.6: An M-FISH image and its segmentation. (a) The M-FISH image, and (b) Hand
segmentation of the M-FISH image.



1.3.2 M-FISH Image Classification

Generally, after segmentation, the next step in chromosome image analysis is the
classification of the segmented chromosomes. Classifying each segmented chromosome is the
process of assigning each chromosome to one of 24 classes (1,2,...,X,Y). Figure 1.7, presents
an M-FISH image and its manual classification map. Each chromosome is assigned to a class.

Note that each image contains two chromosomes of the same class.
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(b)

Figure 1.7: An M-FISH image and its classification. (a) The M-FISH image, (b) Manual
classification of the chromosomes (chromosomes classes are printed for each chromosome).

1.4 Image Processing Algorithms
In the following we briefly describe the main image processing and analysis methods

employed in this work.

1.4.1 Geodesic Dilation

A geodesic dilation [13] involves two images: a marker image f and a mask image g, with
f <g, meaning that the image f is less than or equal to the image g if the value of f is

less than or equal the value of g at all pixels p:

f<geVp, f(p)<g(p). (L.1)
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Suppose a binary image with a pixel p having coordinates (i, j), its four neighbors are
N} ={(i+1i),(i—1i),(i,i+1),(i,i—1)} . The elementary dilation (Figure 1.8) of size 1 for the

image f is defined as:

s"(f)={qlge fyu{p/peNi}. (1.2)
Initial Image 1-Dilation Image
0000000 00000060
®:0 0000000 Elementary © 000 0 0 0
01 0000000 dilation @© o0 e@o0 00O
0000000 00000060

f S

Figure 1.8: An example of the elementary dilation on a set of pixels of an image f .

The geodesic dilation of size 1 of the marker image f with respect to mask image g is

denoted by 5; (f)and is defined as the point-wise minimum between the mask image and the

elementary dilation &' (f) of the marker image:

5, (F)=6V(H)"g, (1.3)
where the point-wise minimum ~ of two images f, g is defined as:
(f 2 9)(p)=min[ f(p),g(p)] (1.4)

An example of the application of the geodesic dilation to an image f is shown below:

Q ~
=
~
—
~—

Marker Image 1-Dilation 5(1)( f ) ]C)%ci:l(:tiiis;c 5u

0000000 (N N N J 0000000
0000000 c0e000O0ODO - 0000 0OO
0000000 00000O0O0 . 0000000
0000000 0000000 0000000
MaskImage@
0000000
CRCN N BCRCN )
CRCN BON N N J

Figure 1.9: Geodesic dilation of size 1 of the marker image f with respect to mask image g
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1.4.2 Greyscale Reconstruction

The reconstruction by dilation of a mask image g from a marker image f [13], [14] is
defined as the geodesic dilation of f with respect to g iterated until stability and is denoted
by Ry (f):

RI(f)=38(f), (15)

wherei such that 5" (f)=65""(f).
An example of the greyscale reconstruction in 1-D is shown below:

1o ] 0

Marker
f Mask

g

W & th @~ @ o

(d)

Figure 1.10: Greyscale Reconstruction of a mask g from a marker f . (a) The 1-D marker f
and the mask g, (b) Geodesic Dilation of Size 3 5,”(f), (c) Geodesic Dilation of Size 4

5;4)( f), (d) Greyscale reconstruction Rg (f)= 5;5)( f).

1.4.3 Otsu method

Segmentation involves separating an image into regions corresponding to objects. We usually
try to segment regions by identifying common properties. The simplest property that pixels in

a region can share is intensity. So, a natural way to segment is through thresholding.

12



Thresholding creates binary images from grey-level ones by grouping all pixels below some

threshold to class C, and all pixels above that threshold to class C,.

Otsu’s method is a thresholding method that separate objects from background. The

threshold operation [15] at grey level | partitions the pixel values of an image | into two

classes C, and C, (representing background and object respectively), i.e., C, = {1,2,...,I}
and C, ={I +1,1 +2,...,L}, where L is the total number of grey levels in the image. Let

o (l) be the between-class variance for the threshold value I:
o =Wy (g =t ) +w, (=1 ) (1.6)

_ ) . n
W():ZPi’ lel—WO’IL[IZ—'LtT ﬂl’ﬂozﬂ, ﬂlZZIF)"’LtT:ZIR’ F)i:_la (1.7)
i=0 1-w, W, i=0 i=0 n

where N, is the number of pixels with grey-level i, n is the total number of pixels in a given

image and P is the probability of the occurrence of grey level i.

An optimal threshold I” can be determined by minimizing the between class variance:

I” =argmin o (l). (1.8)
|

After the computation of the threshold I the binary image B can be computed:

_Joif 1(x, yy<I”
B(X’y)_{l,if |(x,y)>|*}' (1.9)

1.4.4 The Watershed Transform

The concept of watersheds in image processing is based on considering an image in the three
dimensional space, with two spatial coordinates versus intensity. The value of the intensity
(e.g. of the gradient image) is assumed to be the elevation information. Pixels having the
highest gradient magnitude intensities correspond to watershed lines, which represent the
region boundaries. Water ‘placed’ on any pixel enclosed by a common watershed line flows
downhill to a common local intensity minimum. Pixels draining to a common minimum form
a catch basin, which represents a region. The result of the watershed transform is a

tessellation of the image into regions.

13



An easy way to understand watershed is the definition by terms of the drainage patterns
of rainfall. Generally, regions of terrain that drain to the same point are defined to be part of
the same watershed. The same analysis can be applied to greyscale images based on the
visualization of gray level into its topographic representation. This analysis includes three
basic notions: minima, catchment basins and watershed lines. Let | be a greyscale image, a

minima M, is a connected set of pixels with intensity h , from which it is impossible to reach

a pixel intensity h' without having to pass from a pixel of intensity h”, where h'<h<h".
The catchment basin C(M) associated with the minima M is a set of pixels such that if a
drop of water falls at any pixel in C(M), then it will flow down to the minimum M

Watersheds are defined as the lines separating the catchment basins which belong to different
minima [16], [17].

Figure 1.11, illustrates the above features of the watershed transform.

Watershed Line

Intensity

30

26 Eama S g T

! Pixels
Pixels

Figure 1.11: Example of regional minima, catchment basins, and watershed lines produced by
the watershed transform.

Before introducing the algorithm for the computation of the Watershed Transform we
must first define some terms. The Geodesic Distance between two pixels aand b in A is

distance with the minimum length joining a and, and is included in A.
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-d(a,b)

Figure 1.12: The geodesic distance between two points a and b .

Let B be a set composed of the union of components that are included in the set A.

B=(JB, (1.10)

i=1

The Geodesic Influence Zone iz,(B;) of a connected component B in A is the locus of

points of A whose geodesic distance to B is smaller than their geodesic distance to any other

component of B [1]. We define the set of influence zones:
1Z,,(B)={_Jiz,(B) (1.11)
i=1

Skeleton by Influence Zones are the pixels that belong to A and not to the set of

influence zones [1].

SKIZ,(B)=A/1Z,(B) (1.12)

By

Figure 1.13: The geodesic influence zone of each connected component (B,,B,,B;) and the
skeleton by influence zones.
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The purpose of the algorithm is to assign to each pixel p a label lab[p] this label

represents the number of the catchment basin-region which belongs to.

Initialization: All the image pixels get the label INIT (e.g. -1).
Sorting Step: Sort the image pixels based on their intensity.

Flooding Step: In this step we increase the height from h_ to h

For each step h we assume that the flooding step has been completed and all the pixels have
been assigned to a catchment basin (e.g. assigned the label of each catchment basin).
Let’s assume that we process the pixels of intensity h+1. We initialize these pixels with label
MASK (e.g. -2).
Pixels that have a neighbor that has been assigned to a catchment basin are inserted to a queue
and from these pixels the geodesic influence zones are expanded according to the following
rules:

If a neighbor pixel q of the pixel p has been assigned to a catchment basin then this
pixel p is assigned to the same catchment basin.

If a pixel p is has neighbors which belong to different catchment basins then this pixel is
assigned to the watershed line and acquire a special label WSHED _ LINE (e.g. 0).
When the flooding step of pixels having intensity h+1 has been completed, the pixels that
have the label MASK and have not been assigned to any catchment basin, are assigned to

new catchment basins and they acquire new labels.

1.5 Machine Learning Algorithms

Machine learning is the area of artificial intelligence that attempts to provide machines with
the ability to learn from examples [18]. More specifically, in machine learning problems we
make use a set of observations (examples), which we call training set, in order to make
predictions for unseen events. In the area of machine learning there are two major categories
of problems; supervised learning and unsupervised learning. Unsupervised learning methods
assume a training set that only consists of observed inputs in contrast to supervised learning
where the input is also paired with a target (e.g. class label) that provides the desired output

result.

16




151 K-means

The K-means can be used to partition a set of data points X :{Xl,xz,...,XN} , into K
clusters; where each point belongs to d -dimensional space, X, € RY,i=1,...,N . Each cluster
C, is parameterized by a vector m;, (j =1,...,K) which is called its center.

To start the K -means algorithm the, K centers are initialized in some way, for example
to randomly selected data points. K-means is then an iterative two-step algorithm. In the
assignment step, each data point X, is assigned to the nearest center according to the

Euclidean distance. In the update step, the centers are adjusted to the sample means of the

data assigned to the corresponding clusters.

Initialization: Set K clusters m i» j=1,...,K to randomly selected data points from the initial

set of data points.

Assignment step: Assign x; to cluster C; when its distance to the center of this cluster is

smaller than the distances to all other clusters centers:

Hxi—ijs”xi—mi

J1<i<K (1.13)

Update step: The centers are adjusted to match the sample means of the data points that they

are responsible for:
1
m=— > X, 1.14
EIx .14

where |C,| is the number of points belonging to cluster C;.

1.5.2 Bayes Classifier

Suppose we wish to classify N objects X :{xl,xz,...,xN} into K different classes

C,.C,,...,C, where each object belongs to d -dimensional space, X, € R®. Let P(C,) denote

K
the probability that an object belongs to class C,, 1<i<K with Z P(C,)=1 This is called

i=l
the a priori class probability. Let P(X|C,) denote the class-conditional probability
distribution function. It represents the probability distribution of objects of class C,. Let

P(C, | X) be the class conditional probability which is the probability that the object belongs
17




to class C, given its feature vector X. Given P(C,) and p(X|C,), the class conditional

probability for an object represented by the feature vector X is given by the Bayes theorem
[19]:

(G, 3= PXICIPEC)

: 1.15
p() (1

where p(x) =Y p(x|C,)P(C).

i=1
The Gaussian density function is often used to model the distribution of feature values
of a particular class. The general multivariate Gaussian density function in d dimensions is

given by:

(

where is X a d component feature vector, x is the d component mean vector, X is the

p(0) =%exp[—1(x—ufz4(x—u)}, (1.16)
27)" 5| 2

d xd covariance matrix,

%| and 7' are its determinant and inverse respectively. Also

(X—)" denotes the transpose of (X — 4) . During the training phase, the mean vector 4, and

the d xd covariance matrix X are calculated for each class from the training data:

ﬂi=i > x,i=1...,K, (1.17)
Ni Xj€C;
zi:ﬁ (%, = )-(%, =) s i =1 K, (1.18)
i xj€C

where N; the number of pixels of class C, .

To classify an object described by the feature vector X , we calculate P(C, | X) for each class i

and then use the the Bayes Decision Rule:

decide C, if P(C, |x)> P(C, | X), Vj #i. (1.19)

1.5.3 Gaussian Mixture Models and the EM Algorithm

A Gaussian Mixture Model (GMM) is a parametric probability density function represented
as a weighted sum of Gaussian component densities. GMMs are commonly used as a
parametric model of the probability distribution of continuous measurements or features. Let

X denote a feature vector. GMMs [20] represent density functions as a convex combination
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of K Gaussian component densities ¢(x|8') = N(x| 4;,2;), (Where g is the mean and %,

the covariance of the | th Gaussian), according to the equation:

p(x|©) =) 70(x]6"), (1.20)
j=1

K
where the parameters 0 < 7; <1 represent the mixing weights satisfying that Z?Z'j =1, while
j=1

® is the vector of all unknown parameters of the model, i.e. ® = [72'1, TyseeisTT»0,,0,,...,06, ],
with 6, =[ u;.%; ].
The EM (Expectation-Maximization) algorithm is used for training Gaussian mixtures

given a training set of points X ={x,X,,..., X, } . It is an iterative algorithm that starts from

some initial estimate of ®, and then proceeds to iteratively update ® until convergence. Each

iteration consists of an E-step and an M-step:

E-Step: Let 6 denote the current parameter values. Compute the membership weights W’

for all data points X, 1 <i <N and all mixture components k , (1<k <K).

()
w® = (P(Xi|9k )7Tk , 1<i<N, 1<k<K (1.21)

ik K

Z§0(Xi | Qr;t))ﬂm
m=1

M-Step: Use the membership weights to update the parameter values 6"". Let

N = Z.N: W, i.e., the sum of the membership weights for the k -th component. Then:

. N(t)
ﬂﬁt 1):—|\k| , (1.22)
(t+1) _ 1 N (t) 1.23
Hy _WZ\NikXi’ (1.23)
k i=l
(t+1) 1 < (t+1) )\
2 = XA (- (1.24)
K=l

Both K-means and EM depend highly in the initialization of the parameters.

1.6 Thesis Objectives and Contribution
Most of the already published methods which deal with automated segmentation and

classification of M-FISH images either first segment the image and then classify the
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segmented region or they directly classify all the pixels of the M-FISH image including a

class for the background. The main disadvantages of the methods are the following:

Most of the methods that segment the M-FISH image include a class for the
background and classify each pixel of the image into 1-24 chromosome classes
including also one class for the background. This has the disadvantage that they do not
take into account spatial information of neighborhood pixels. The segmentation
method introduced in Chapter 2, is based on the multichannel watershed transform in
order to define regions of similar spatial and spectral characteristics. Thus the goal is
to develop an image segmentation technique that will segment the M-FISH image
using all the channels of the M-FISH image.

Automated classification methods for the M-FISH images reported in the literature;
classify pixels of the M-FISH image instead of classifying regions. This usually
produces noisy results. The development of a method with high classification accuracy
for all the chromosome classes will make the M-FISH technique widely used for the
easily detection of chromosome anomalies.

Chromosome misclassification errors result from different factors such as uneven
hybridization, spectral overlap among fluors, and biochemical noise. However, no
filtering method has been proposed that will take into consideration the information
from all the channels in order to filter these multichannel images. A method such as
the Vector Median Filtering could be the choice for this type of images.

Most of the methods that classify an M-FISH image use a number of labeled training
images in order to train a supervised classification method such as Bayes, SVM, and
k-NN. One of the key factors limiting the pixel classification accuracy of these
methods is the variations between M-FISH images. This is due to the fact that the M-
FISH imaging process is not always accomplished under the same conditions e.g.
humidity, temperature, type of microscope, color spread [21,30] and these factors
affects the quality of the produced M-FISH image. An unsupervised method that does
not require a set of labeled training images is a necessity for the wide application of
the M-FISH image technique.

It is common for an M-FISH image that the chromosomes do very often partially
occlude each other; hence, their segmentation is not trivial and requires special

treatment. Hence an automated method for the segmentation of touching and
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overlapping groups of chromosomes in M-FISH images would be very helpful for

cytogeneticists.

The contribution of the thesis is fivefold:

e First, we focus on the efficient region segmentation of M-FISH images. We
propose a new algorithm for the segmentation of multichannel M-FISH images
into chromosome regions.

e Next, we propose a supervised method for the classification of the segmented
regions of the M-FISH image based on the Bayes classifier.

e We study the effect of the Vector Median Filtering on the classification accuracy
of the M-FISH images

e  We propose an unsupervised method for labeling the chromosome regions.

e We propose a method for the disentangling of touching and overlapping
chromosomes.

In Chapter 2, a method for the region segmentation of the multichannel M-FISH
chromosome images [21], [22] is presented. The method uses the information from all the six
channel M-FISH images in order to segment the M-FISH image. The main novelty of this
method is that we segment effectively the M-FISH image into regions, without using training
information, while until now all the methods tackle the segmentation problem as part of the
classification problem considering the background as an extra class.

In Chapter 3, we employ a supervised statistical approach to classify the obtained
segmented regions [22]. The proposed region classification approach is empirically shown to
outperform already proposed pixel-by-pixel classification approaches. We further examine the
effect on the classification accuracy using a multichannel filtering technique, the Vector
Median Filtering [23].

In Chapter 4, we propose a fully automated unsupervised classification method for the
classification of M-FISH images [24]. The method first uses the region segmentation method
in order to segment the multichannel image. Then we employ the well-known Expectation
Maximization algorithm in order to build single channel Gaussian Mixture Models (GMMs).
Then we use those models to estimate the parameters of a multichannel Gaussian Mixture
Model where each chromosome class is represented by a Gaussian component. More

specifically, we build a single channel GMM for each channel of the M-FISH image
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incorporating the emission information that is available. These singe channel GMMs are then
used to estimate the multichannel Gaussian mixture that is used to train the parameters of the
multichannel GMM using the MAP-EM algorithm. Finally, each region is classified using the
multichannel GMM and the labeled regions are merged providing the final classification map.
The main contribution of this method is that the whole procedure is unsupervised and does
not require the specification of a labeled training set. Although unsupervised, the
classification accuracy of this method seems to be superior compared to supervised ones.

Chapter 5, presents a novel method for the disentangling of touching and overlapping
chromosomes of the M-FISH image using the watershed transform and gradient paths [25].
An efficient way to “cut” these groups of chromosomes is to find a path of pixels that have a
relative low grey level intensity and run between touching groups of chromosomes. We
expand the idea of pale paths for M-FISH images by defining gradient paths where the “cut”
runs through pixels of high intensity (gradient pixels). The method uses the multichannel
gradient as a measure of separability of touching and overlapping chromosomes. By defining
gradient paths we manage to deal not only with touching groups of chromosomes but also for
overlapping groups.

Finally, in Chapter 6 we provide a summary of the results of this thesis and suggest

some interesting directions for further research.
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CHAPTER 2:

A MULTICHANNEL WATERSHED-BASED
SEGMENTATION METHOD FOR
MULTISPECTRAL CHROMOSOME IMAGES

2.1 Introduction

2.2 Automated Chromosome Segmentation of M-FISH Images - Literature Review
2.3 Motivation — Goals

24 Watershed Based M-FISH Image Segmentation

2.5 Segmentation Results

2.6 Conclusions

2.1 Introduction

Multiplex Fluorescent In Situ Hybridization (M-FISH) is a chromosome imaging technique

where each chromosome class appears to have a distinct color. This technique not only

facilitates the detection of subtle chromosomal aberrations but also makes the analysis of

chromosome images easier; both for human inspection and computerized analysis. The

proposed segmentation method is based on the multichannel watershed transform in order to

define regions of similar spatial and spectral characteristics. The method consists of two steps:

(a) computation of the gradient magnitude of the image, (b) application of the watershed

transform to decompose the image into a set of homogenous regions.
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2.2 Automated Chromosome Segmentation of M-FISH Images - Literature Review
Since M-FISH technology has been introduced, many attempts have been reported which
tackle the problem of segmenting chromosomes [3], [26], [27], [28], [29], [30], [31], [32],
[21]. Semi-automated analysis of M-FISH images was first introduced in the mid 90’s [3].
The DAPI channel was used to create a binary mask. Then, for each pixel of the mask a
threshold was applied in order to detect the presence or absence of a fluor in that pixel. Each
pixel class was determined by comparing the response of the combined fluors to that of a
labeling table.

Region based classification approaches were also introduced [26], [27]. The method of
Eils et al. [26], consisted of two stages: (i) spectral calibration and (ii) adaptive region
classification. During the calibration stage a five-dimensional optimal vector called adaptive
feature vector, representing each class, was found by minimizing an energy function. The
region classification stage was based on a Voronoi image tessellation algorithm [33].
Neighboring regions were merged if they belong to the same class or alternatively, when their
color distance was below a preset threshold.

Saracoglu et al. [27], proposed a method consisting of three steps: image tessellation,
clustering and classification. The image was tessellated into regions with similar properties
using a region growing approach (tessellation step). Based on the “average” color information
of the regions, clustering is performed. The region color vectors are grouped to form a known
number of clusters (clustering step). Finally, each cluster is assigned to one of the color class
vectors (classification step).

Methods using pixel-by-pixel classification algorithms have been used in M-FISH
analysis. These methods either classify each pixel of the M-FISH image [28], [29], or create a
binary mask of the DAPI image using edge detection algorithms, and classify each pixel of
the mask [30], [31]. A method for joint segmentation-classification of chromosome M-FISH
images was presented in [32]. A probabilistic model of M-FISH chromosomes was introduced
which allows for simultaneous segmentation and classification. The additional information
provided by multiple spectra in chromosome images made it feasible to distinguish
chromosomes that overlap and are in touch within clusters.

Table 2.1, presents the advantages and limitations of related studies on chromosome
segmentation appearing in the literature. Most of these methods [28], [29], [30], [31], [32]
deal with the above problem using pixel-by-pixel classification techniques; without taking

into account neighborhood information. On the other hand, only few region-based methods
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[26], [27] have been proposed in the literature, that are based on a large number of parameters

which are determined heuristically.

Table 2.1: Advantages and limitations of methods presented in the literature.

METHOD YEAR ADVANTAGES LIMITATIONS
o . D d timal optical and
Speicher et al. First time use of M-FISH images. epel} S onop 1me.1 .op featan
3] 1996 Simple classificati thod experimental conditions.
mple classification method. . .
1mp reatl Lack of classification results.
Fils et al. 1998 Region based segmentation- Lack of classification accuracy for
[26] classification. various M-FISH sets.
Saracoglu et al. 1998 Region based segmentation- Several threshold and parameters
[27] classification. are heuristically set.
. . . . Does not handle
Pixel-by-pixel classification touchine/overlannin
Sampat et al. 2002 methodology. g pping
[28] . . . chromosomes.
High classification rate. .
Small number of testing images.
Use of background correction, color Does not handle
Choi et al. 2004 compensation and filtering touching/overlapping
[29] techniques as preprocessing step. chromosomes.
High classification rate. Small number of testing images.
Does not handle
touching/overlappin,
Employment of different £ pping
Sampat et al. ) . chromosomes.
2005 classification methods (MLE, k- .
[30] NN) Small number of testing images.
' Segmentation based on edge
detection only on DAPI image.
. D t handl
Use of background correction, oes .no ancie .
. . touching/overlapping
feature selection and image chromosomes
Wang et al. 2005 registration techniques as i L
[31] . Small number of testing images.
preprocessing step. .
. . . Segmentation based on edge
High classification rate. i i
detection only on DAPI image.
Handle overlapping/touching .
Schwartzkopf et hromosomes. Complvlcated me;thod. -
al. 2005 . Low pixel-by-pixel classification
Use of large number and various
[32] accuracy.

cases of M-FISH images.

2.3 Motivation — Goals

As already noted the methods introduced for M-FISH image segmentation use a plethora of

parameters and have been tested on a small number of M-FISH images. Furthermore the

segmentation is based only on the greyscale DAPI image without using the information from

the other five channels. Finally, the segmentation methodologies employ image classification

techniques (e.g. pixel-by-pixel technique) for the image segmentation without taking into
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consideration spatial information. Thus a segmentation method using all the M-FISH channels
and taking into consideration spatial information is expected to be effective [22]. The
approach uses the Watershed transform which is popular image segmentation used both for

greyscale and color images.

2.4 Watershed Based M-FISH Image Segmentation

Segmentation of multispectral images using the watershed transform is performed in four
steps (Figure 2.1). More specifically, the gradient magnitude of the multispectral image is
computed combining the contrast information from the different spectral channels. Due to the
high sensitivity of the watershed algorithm in the variations of the gradient an automatic
selection of significant minima is realized in the next step, where the watershed transform is
applied and a large number of homogenous regions is produced. A binary mask of the DAPI
channel is computed and superimposed to the tessellation in order to further reduce regions

that do not belong to chromosomes.
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Figure 2.1: Flowchart of the proposed method.

2.4.1 Multichannel Gradient Computation

To apply the watershed based segmentation algorithm to the multichannel data, the gradient
of the multichannel image must be defined. The computation of a tensor gradient was
introduced by DiZenzo et al. [34], instead of separately computing the scalar gradient for each

channel [35]. Drewniok [36] extended this work to multispectral images. Assuming a
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multichannel image 1(i, j):Z*> = Z" (m =5 for M-FISH images), the direction n is defined

by the angle ¢ :

L, (X,y)
1y =| 2, @1
(X, Y)
n= {C_Os ﬂ, 2.2)
Sin

where 1,(X,Y), 1<i<m are the components (channels) of the M-FISH image.

The directional derivative of the function 1(X,y) consists of the directional derivatives

:
of each component of I(x,y):ﬂ: %,%,---,alm ,
on on on

on

Projecting each directional derivative in the direction n, we have:

Vll'n _le |1y_
I VI, -n (DA B
a_| v 2 n=J-n, (2.3)
on : Do

VIL-n] [ 1

where VI, = [Iix Iiy]: 1<i<m, J is the Jacobian matrix and I; and I are the derivatives

of the i-th component in the X and y direction, respectively.
Next, the direction N which corresponds to the maximum of the directional derivative

I(x,y)is found, by maximizing the Euclidean norm:

Vi-n [

VI, -n (A B
e A T (2.4)
on : Do

VI-n] [ 1
190 =@ -m"(@-n=n"@"I)n. (2.5)

The symmetric matrix J'J can be written as:

> (1)
J = -

| m
X 1y
2
i=1

X 1Y
Ii Ii

: (2.6)

£
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The extrema of the quantity n' (J7J)n, are given by the eigenvalues of the matrix J™J [36].
Sobel operators [37] are used to compute the directional derivatives 1,17 :1<i<m in the X

and Yy directions, respectively.

2.4.2  Minima Selection with the H-minima transform

Direct application of the watershed algorithm to a gradient image usually leads to over
segmentation due to noise and other local irregularities of the gradient. A practical solution to
this problem is to limit the number of allowable regions by reducing the number of irrelevant
minima. Several algorithms have been proposed for minima selection. The simplest is
interactive selection by the user [38] or by using a priori knowledge for the image [39]. The
dynamics approach [40], [41] orders all minima and selects only those below a threshold.

We have used the dynamics approach [41] to reduce the number of unwanted minima,
as it provides an intuitive selection scheme controlled by a single parameter (h ) using the
greyscale reconstruction.

Image minima and maxima are important morphological features because they often
mark relevant image objects: minima for dark objects and maxima for bright objects. In
morphology, the term minimum is used in the sense of regional minimum, i.e., a minimum
whose extent is not necessarily restricted to a unique pixel. A regional minimum M of an

image f atelevation h is a connected component of pixels with the value h whose external
boundary pixels have a value strictly greater than h . The h -minima transform of an image

f, HMIN,(f) suppresses all minima whose depth is lower or equal to a given threshold

level h. This is achieved by performing the reconstruction by dilation of f from a new

image f°—h, where f° is the complement image of f ,[37]:
HMINh(f):[RfC(fC—h)T. 2.7)

An example of the application of the h -minima transform for 1-D signal is shown

below.
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(b)

Figure 2.2: Removal of all the minima with depth h =3, (a) Initial signal, (b) The signal after
the h -minima transform, HMIN,(f) (red line).

2.4.3 Segmentation using the Watershed Transform
The watershed transform presents some advantages over other segmentation methods.
= The watershed lines form closed and connected regions, where edge based techniques
usually define disconnected boundaries that need post-processing to produce closed
regions.
= The watershed lines always correspond to obvious contours of objects which appear in

the image.
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The main problem of over-segmentation can be usually overcome by the use of
preprocessing or post-processing, producing a segmentation that better reflects the
arrangement of objects within the image. Such preprocessing or post-processing methods
include region merging [21], multiscale watershed [22], [23], marker-based watershed
segmentation [24], [25], and watershed-based deformable models [26], [27].

We adopted an efficient implementation of the watershed transform [16]. The watershed
computation algorithm used here is based on the Immersion Approach: imagine that a hole is
drilled in each minimum of the surface, and water is flooded into different catchment basins
from the holes. As a result, the water starts filling all catchment basins, which have minima
under the water level. If two catchment basins would merge as a result of further immersion, a
dam is built all the way to the highest surface altitude and the dam represents the watershed
lines. This flooding process will eventually reach a stage when only the top of the dam is

visible above the water line.

The output of the watershed transform for an image | is a tessellation R, of the image
into its different regions R, 1<i<C., each one characterized by a unique label

l.,1<i1<C,:

Ri={R1g) (Rl s (R, (2.8)
where C; the number of regions produced by the watershed transform.

Thus a new label image L, is defined where each pixel is assigned the label of the

region where it belongs to. Pixels belonging to the watershed lines are assigned the special

label 0.
. g, if the pixel (i, j) e R
L, (1, ]) = . o N (2.9)
0, if the pixel (i, j) e Watershed Line
Also a new image W, is defined as:
. 0, if L, (i, ) eWateshed Line
Wiines (1, 1) = w ) : (2.10)
1, otherwise

Figure 2.3(a) illustrates the initial segmentation produced by the watershed transform.
In Figure 2.3(b) all the watershed regions are represented by the average color of each region,

which is valuable information for the cytogeneticist.
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(b)
Figure 2.3: Watershed segmentation of an M-FISH image: (a) Watershed regions
superimposed (white line) on the M-FISH image, and (b) watershed regions are labeled with
the average color of each region.

2.4.4 Creation of the Binary Mask
After applying the WT on the greyscale reconstructed multichannel gradient image a number
of regions is produced. However, two major problems are emerging which must be handled
efficiently.
1. The M-FISH image often contains artifacts that appear in some channels but not in the
greyscale DAPI channel. These artifacts often contain dust, unattached dye, salt

deposits from evaporated solvents, fibbers, various airborne debris and fluorescent
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artifacts [42]. An example of such an artifact is shown in Figure 2.4(a) with purple

stain.
WATERSHED
M-FISH IMAGE
SEGMENTATION
~
}\]
N’
~
S5
N’

Figure 2.4: (a) An example of an artifact shown in M-FISH image (purple region). (b) An
example of failure of hybridization close to the centromere.

2. Regions on central areas of chromosomes (centromeres) usually fail to appear in the
M-FISH image (failure of hybridization) [43]. An example of this effect is shown in
Figure 2.4(b), where the centromere of the chromosome has not been hybridized and
the watershed segmentation fails to segment it. Furthermore, in Figure 2.5 the average
fluor signals for the five different M-FISH channels are shown along a chromosome.
As it can be observed close to the center of the chromosome (centromere) the fluor
signal of all the channels drops significantly making the detection of this region

extremely difficult.
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Figure 2.5: Averaged fluor signals along the chromosomal axis.

Thus, the goal of this step is to refine the watershed segmentation to exclude regions
corresponding to artifacts (Figure 2.4(a)) and to include regions corresponding to centromeres
(Figure 2.4(b)). To achieve this, the DAPI image is used. First, the DAPI chromosome image

is converted to binary using Otus’s threshold selection process [15]:

0, if DAPI(i, j)<I } 2.11)

B. (i, )= )
s (1-J) {1, if DAPI(, j)> I

where | the threshold found by the Otsu method [15].
Then the watershed lines are used to segment the regions produced from the binary

image Bg,:

B = BO WLines (2 12)

Regions tsu
where. is the logical AND operator. At the end of this step all connected components which
are not “0” are relabelled with a unique label.

Two indicative examples of the application of this step on the watershed segmentation
method are presented in Figure 2.6. As it is shown in Figure 2.6, the contribution of this step
is crucial for the segmentation stage of this method as two aspects are handled effectively.

First, image artefacts contained in the M-FISH image are removed successfully as it is shown

in Figure 2.6 (Case A). Second, in the central chromosome region (centromere) where the M-
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FISH hybridization fails, this step uses the DAPI channel to segment correctly these regions,
Figure 2.6 (Case B).

M-FISH DAPI WATERSHED MASK BINARY BINARY
SEGMENTATI W MASK MASK
IMAGE IMAGE ON watershed B WB

V dASVD

g 4dSvD)

Figure 2.6: (Case A) Elimination of artifact (purple region) in an M-FISH image. The artifact
is detected as chromosome region by the multichannel watershed transform and eliminated
using the binary mask. (Case B) Detection of un-hybridized centromere using the binary
mask, when the watershed segmentation fails to detect it.

2.5 Segmentation Results
The proposed method is tested on the ADIR M-FISH chromosome image database [44]. The
only tuneable parameter of the proposed method is h in the greyscale reconstruction
function. Several experiments were performed varying h from 0-250 (with step 10). h=0
corresponds to the finest tessellation and h =250 corresponds to the coarsest tessellation. A
good choice was found to be h=50 since as the region size increases, adjacent
chromosomes regions with different color information are connected, Figure 2.7.

The performance of the segmentation step is evaluated using the overall and
chromosome segmentation accuracy per image, defined as:

# pixels correctly segmented

overall _segmentation = - -
#total image pixels

(2.13)

#chromosome pixels correctly segmented
#total chromosome pixels

chromosome _ segmentation = (2.14)
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Figure 2.7: Example of region segmentation for two different values of the parameter h . (a)
The ground truth classification map, (c) Image segmentation for h=190 (e) Image

segmentation for h=200.

The overall segmentation (averaged over all images) accuracy is 98% with standard
deviation 1% and the chromosome segmentation accuracy is 82.5% with standard deviation
12%. Since a majority of the pixels are background pixels, the chromosome segmentation
accuracy mainly reflects chromosome segmentation. For this reason, the overall segmentation
accuracy was substantially higher than chromosome segmentation accuracy.

Translocation is the most significant rearrangement. It involves two non homologous
chromosomes which result from a break in each of the chromosomes, and subsequent reunion

[45]. The detection of translocations is difficult even for an expert. A change in the colour of
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a chromosome tip may be due to noise, staining, or an actual translocation. Three examples of
translocations are shown in Figure 2.8. The translocations are accentuated due to the variation
of the colour between two regions of the same chromosome. It is clear from Figure 2.8 that
the segmentation method succeeds in defining regions of the same colour information which
correspond to the translocation. Thus, a more acceptable segmentation map is provided to the

expert in order to recognize more easily and accurately chromosome rearrangements.

M-FISH Region Segmentation

CASE A

CASE B

CASE C

Figure 2.8: Three examples of exchange of genetic material (translocation) between two
different chromosomes and regions produced by the multichannel watershed algorithm. Case
A: Translocation t(5;17) , Case B: Translocation t(9;14), and Case C: Small translocation
t(14;15).
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2.6 Conclusions

In this chapter we have presented a new fully automated chromosome segmentation method
for M-FISH images. The method utilizes a multichannel watershed segmentation algorithm.
Initially, the chromosome image is decomposed into a set of homogeneous regions using the
multichannel watershed algorithm. The method uses all the M-FISH channels and creates a
chromosome mask from the DAPI channel to further eliminate artefacts as also to segment
correctly the centromere areas of the chromosome. To evaluate the method we used the ADIR
M-FISH database and evaluation results are very promising, resulting in overall accuracy
82.5%.

The proposed method uses a multichannel segmentation method to segment the M-FISH
image into homogenous spectral regions which combines spectral information from different
channels. This is advantageous since it is an effective way to incorporate spatial
characteristics into the analysis, which leads to superior performance in terms of classification
accuracy.

The segmentation of each chromosome into regions emulates the procedure followed by
an expert to identify chromosome rearrangements (anomalies). As we have already shown in
Figure 2.8, regions with different colour information (translocations) are accurately defined
by the proposed method. It is important to be mentioned that the segmentation by itself
already gives the cytogeneticist an advantage in his/her medical assessment. On the other
hand, the employment of the Otsu binarization method greatly simplifies the detection of
chromosome regions that have not been hybridized (Figure 2.6), providing a more accurate
segmentation of the M-FISH image.

In [21] an analogous approach has been proposed having however significant
differences with the proposed method. The most important is that the gradient computation
was based only on the DAPI channel, not taking into consideration information from the other

five channels. Thus, chromosome anomalies could not be effectively detected.
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Figure 2.9, presents indicative segmentation examples concerning the use of
multichannel gradient magnitude versus the use of monochannel gradient computation used in
[10]. Note that chromosome anomalies, shown in cases B and C, are not satisfactorily

segmented using 1-D gradient by the watershed algorithm.
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Figure 2.9: Three indicative cases related to the watershed segmentation map; produced using
(a) 1D-gradient [27] of the DAPI channel and (b) the proposed multichannel gradient
magnitude.
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CHAPTER 3:
SUPERVISED REGION CLASSIFICATION

3.1 Introduction

3.2 Region Bayes Classification

34 Vector Median Filtering of M-FISH Images
33 Region Merging

3.5 Classification Results

3.6 Conclusions

3.1 Introduction
Along with the emergence of M-FISH imaging, automated methods for the classification of
this type of image were developed. Methods using pixel-by-pixel classification algorithms
have been introduced in M-FISH analysis. These methods either classify each pixel of the M-
FISH image [28], [29] or create a binary mask of the DAPI image using edge detection
algorithms, and classify each pixel of the mask [30], [31]. A method for joint segmentation-
classification of chromosome M-FISH images was presented [32] that build a probabilistic
model of M-FISH chromosomes which allows for simultaneous segmentation and
classification. The additional information provided by multiple spectra in chromosome
images made it feasible to distinguish chromosomes that overlap and are in touch within
clusters.

Pixel by Pixel classification techniques were the first methods which introduced for
classifying the pixels of the M-FISH image. These techniques do not take into account
neighborhood information, and also consider the background as an additional class. The goal

is to develop a region classification method which will take into account spatial information.
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This spatial information has been already available from the region segmentation step which
was described in the previous Chapter. The region classification could also aid the

cytogeneticist, since he usually is interested in chromosome regions instead of pixels.

3.2 Region Bayes Classification

Assume that a segmented region, produced by the multispectral watershed segmentation,

consists of N pixels. Let R is the set of N feature vectors of the region in the image

R={X.X,....Xy}, where x e®R’,i=1..,N. Let also P(X|C)=N(z,%) be the
distribution for class C,. Then the class conditional likelihood P(R|C;) of region R is

computed as [46], [47]:

N
p(R|Ci): P(X;, X505 X, |a)|):H p(xj |Ci):
j=1

1 " 1 - ’
- - . =) X e
[(2ﬁ)5/2|2_|1/2J eXP( 21_2_1‘,09 1) 27X ﬂ.)j

(3.1)

The mean vectors and the covariance matrixes for each class are computed by a training

phase, from an annotated set of M-FISH images as follows:

ﬂizi D Xei=L.,K, (3.2)
Ni X € G
1 .
L=t S (%=t) (% —1) L= K. (3.3)
i~ 1xeC

Working with the natural logarithm and dropping all terms that are the same for all

classes, the Bayes decision rule assigns the set of region pixels R to class G if:

vi# j, DS,(R)>DS,(R), (3.4)

where

N 13 T -1
DS,(R) === In[=, [~ 30~ 4) '~ 1) + InP(@). (3.5)
=1
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The a priori class probabilities for each class P(@), are computed using the training

set, as the percentage of all chromosome pixels in the training data that belong to class @:

# pixelsbelong toclass »
P(0) = gloclasse) (3.6

> (# pixelsbelong toclass w, )
k=1

It is well known that the chromosome class reflects the size of each chromosome in
descending order (i.e. chromosome 1 is the largest and chromosome 22 is the smallest). From
Figure 3.1, it is obvious that as the chromosome size decreases its a priori probability also

decreases.
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Figure 3.1: The a priori probabilities for the chromosome classes 1-22, X and Y.

3.3 Region Merging

After region classification there are still regions that could be merged resulting into a
meaningful classification map based on the principle that adjacent regions of the same class
could be merged to one region. Adjacency is a symmetric relationship which can be easily

represented by the region adjacency graph (RAG), where two nodes (representing two distinct
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regions) are connected if those two regions are adjacent in the image i.e. they have a common
boundary. Consequently, all adjacent regions that share the same class are merged.

The application of the classification and merging step in an M-FISH image is shown in
Figure 3.2. Initially the image is segmented with the multichannel watershed segmentation
(Figure 3.2(b)) and then the segmented regions are classified based on the region Bayes
classification method (Figure 3.2(c)). The final classification map after the region merging
step is shown in Figure 3.2(d). A separate color was used to represent each chromosome class

in the image.

(a)
-,
”A '.’ Q-i‘
= ( .l\‘ 9
g ¥ ~

(©) (d)

Figure 3.2: Example of an M-FISH image segmentation and classification: (a) original M-
FISH image, (b) the segmented image using the multichannel watershed segmentation, (c)
region classification, and (d) the final classification map using region merging.
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3.4 Vector Median Filtering of M-FISH Images

In multichannel image filtering, each image pixel can be considered as a vector of features
associated with the intensities of the channels. In order to filter multichannel images, the
vector filtering algorithms are preferred [48], [49], [50]. We have chosen to filter M-FISH
images using the vector median filtering (VMF) approach since the noise in M-FISH images
is due to the microscope [49] (impulsive noise). Vector median filtering is the most popular
and appropriate filtering technique for the removal of this type of noise since the impulse
response of the VMF is zero [49].

In general, component wise (marginal) approaches produce new vector samples, i.e.
color artefacts, caused by the composition of reordered channel samples. Vector filters
represent a natural approach to the noise removal in multichannel images, since these filters
utilize the correlation between color channels. The output of these filters is defined as the
lowest ranked vector according to a specific ordering technique.

Suppose a square filter window with a set of input multichannel samples such that

X ={x:i=1...,N}, where xe R’ and N is an odd integer which represents the size of the
window. Let us consider an input sample X :1<1< N, associated with the distance measure

L, and the angle distance A defined as [51], [50]:

N
L=2
=

(3.7)

H
/e

N XX

A =Z:cos"1 —1 (3.8)
i1 |XiHXj‘

where y characterizes the employed norm, and | | is the magnitude of the vector. Note that

the well-known Euclidean distance corresponds to y =2 [49]. The ordering criterion is

expressed using products of L, and A [51]:

N N X-XT
Q=LA=Y|x —XijZcos’l (—J] 1<i<N (3.9)
j=1 j=1

Then, the ordered set is given by, Q, <€, <...< Q. The same ordering scheme applied
to the input set results in the ordered sequence, X’ <x) <., <x“™ . The sample x’
associated with €, represents the output of the directional distance filter (DDF). Let us

assume the DDF with the power parameter p so that the power 1— p is associated with the
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sum of vector distances and the power p e [0,1] is associated with the sum of vector angles.

Thus, Eq. (3.10) can be simply rewritten as:

ot (S | | S|

If p=0, the DDF operates as the vector median filter (VMF), whereas for p =1, the

p
J ,1<i<N (3.11)

I

DDF is equivalent to the basic vector directional filter (BVDF). The weighted vector median

filter is defined through a set of weights. Assume a set of nonnegative integer weights

W, W,,...,W, so that each weight w;, 1< j<N is associated to each input sample z ;- Then, it

is possible to express the weighted vector distance D, as:

D, = ZN:WJ.
j=l1

Xy} associated with the minimal combined weighted

<i<N. (3.12)

The sample x™ e{x,Xx,,...,

distance D, is the sample which minimizes the sum of weighted vector distances and the

output of the WVFM filter. The CWVMF [52], [53] framework is more adequate for adaptive
filter design with validations of the smoothing levels in the filtering process. Consider that the

weight vector is given by:

Wj:{N—2k+2,j=(N +1)/z}’ 613

1, otherrwise

where k=1,...,(N+1)/2.

The above states that only the central weight W ,,,,, associated with the central sample

Xnip, can be changed, whereas other weights associated with the neighboring samples

(N+1)/

remain equal to one [52]. If the smoothing parameter k is equal to one, then the CWVMF is
equivalent to the identity operation and no smoothing is performed. In the case k=(N+1)/2,

the maximum amount of smoothing is performed and the CWVMF filter is equivalent to the

VMF.
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3.5 Classification Results

To compute the classification accuracy four images were chosen randomly three times from
the dataset and the test was performed with the remaining images. Thus three different
training subsets (Sub A, Sub B, Sub C) were created. The training dataset consists of all
chromosome classes and no overlap between the training and testing data exists. Also pixels
belonging to two or more chromosomes (chromosome overlaps) were not considered for
training and testing.

The proposed method was compared with a Bayes pixel-by-pixel classification
technique [28], which is the main classification scheme for several related works in the
literature. Pixel-by-pixel classification is performed for the pixels in the segmented regions of
chromosomes. We have trained and evaluated both methods using the same training and
testing set. The average chromosome classification accuracy obtained for each M-FISH

training subset: Sub A, Sub B, and Sub C is shown in Table 3.1.

Table 3.1: Chromosome classification accuracy using the proposed method and a pixel-by-
pixel classification method

CLASSIFICATIONACCURACY

SUBSETS REGIONBASED PIXEL-BY-PIXEL
[7]
SuB A 82.2%( + 14.9%) 70.8%(+ 16.2%)
Sue B 82.4%( + 14.8%) 70.6%(+ 16.8%)
SuBC 82.6%( £ 14.4%) 70.4%( £ 16.5%)
OVERALL 82.4% 70.6%

The relationship between segmentation accuracy and region classification accuracy is
shown in Figure 3.3. It should be mentioned, that the segmentation and classification stages
are two independent methods. Therefore an almost perfect segmentation result cannot ensure

the best classification accuracy.
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Classification Accuracy

Figure 3.3: Region classification accuracy vs. segmentation accuracy.

Figure 3.4 depicts the classification accuracy difference between the proposed and the
one presented in [28] for each chromosome class. From Figure 3.4(b) we can conclude that

with the proposed method high accuracy is obtained for small chromosomes where the
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3.5.1 Vector Median Filtering Results

We used the ground truth image in order to assess the performance of the region Bayes
classifier for the different multichannel filtering schemes. Four images were chosen randomly
five times from the database and the test was performed with the remaining images. Thus five
different training subsets were created. The training dataset consists of all chromosome
classes and no overlap between the training and testing data exists.

In order to measure the performance of the different multichannel filtering schemes we
measured the chromosome classification accuracy of the region based classification using non
filtered and filtered images. As it is shown in

Table 3.2, BVDF achieves the best results in terms of accuracy improving the
classification accuracy by 3.34%. CWVMF attains the worst improvement by 2.47% while
the DDF and VMF result in an improvement of 3.07% and 3.01%, respectively. The

application of the different multichannel filtering schemes is illustrated in Figure 3.6.

(b)
VMF BVDF DDF WVMF

Figure 3.5: Application of different multichannel filtering enhancing schemes to an M-FISH
image: (a) Original M-FISH image and (b) M-FISH image after the application of the
different filtering schemes.
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Table 3.2: Comparison of our research with other automated classification methods for M-

FISH images.
Un filtered Images Multichannel Filtering Schemes
Pixel Based | Region Based
#Dataset Classification | Classification ‘(](1;/[ )F B(\()’/D)F ]()(}/) f CV;’;’ 1)\/[F
(%) (%) (1) (1] (1] o
1 73.01 78.18 82.06 82.14 82.30 81.82
2 72.52 79.77 82.63 82.54 82.18 81.93
3 73.83 79.83 82.02 83.20 82.05 82.15
4 72.04 79.93 82.34 82.77 83.28 81.49
5 71.72 78.64 82.39 82.45 81.90 81.32
Overall 72.62 79.27 82.28 82.61 82.34 81.74
+13.68 +13.04 +12.22 +11.12  +12.32 +12.44

3.5.2 Pixel-by-Pixel Limitations

The method divides the M-FISH image into regions, i.e. groups of pixels which are assumed
to be members of the same chromosome class. The method compares a set of pixels with the
training class distributions instead of comparing a single feature vector (i.e. a pixel). Two
indicative cases where the proposed method is superior compared to the pixel-by-pixel
classification method are presented in Figure 3.6. In these two cases pixel-by-pixel
classification produces noisy results making the decision of the expert difficult since these

artefacts can be misinterpreted as chromosome abnormalities.

Classification Map

M-FISH image Karyotype Pixel-by-Pixel Region based

I [28]

< ‘ 1 . -y L]

% Ly 'b

<

m

w2

< ‘

@) ‘

Figure 3.6: Examples where the pixel-by-pixel classification produces noisy results.
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3.5.3 Influence of the classification accuracy due to region size

In order to describe the influence of the classification accuracy due to the region size several
experiments were performed varying the tuneable parameter h as we have describe in the
previous chapter. The mean classification accuracy was computed varying the values of h
from 0-250 (with step 10) and is presented in Figure 3.7. Additionally this figure presents the
region size versus h. The classification accuracy varies from 81% to 88%. Initially as h
increases the classification accuracy increases but for values h>125 it remains constant. This
is due to the fact that when h is large, the mean size of the regions increases since regions

with same spatial and color characteristics are merged.
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Figure 3.7: Classification accuracy vs. h, and region size vs. h .

3.6 Conclusions

If a classification is performed on a pixel-by-pixel basis, the classification will be dominated
by noisy painting in homogeneities. This is obvious by the misclassifications errors produced

by the pixel-by-pixel algorithm as it is shown in Figure 3.6. In contrary region-based
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classification avoids these types of errors since pixels with similar spectral information
contribute in the classification. Moreover, region-based -classification provides better
classification accuracy than the maximum a posterior pixel-by-pixel classifier. The increased
classification accuracy of the proposed method in cases of small chromosomes is an important
feature in clinical cytogenetics [54]. Small chromosomes are often involved in simple or
complex rearrangements, either in genetic disorders or in cancer. In this way genetic analysis
becomes more reliable and may explain unidentified aberrations in clinical cases.

Another important aspect is that the produced classification and segmentation map
could be used as a decision support tool for cytogeneticists during their daily clinical practice.
Figure 3.2(d), is an indicative example of the information that can be provided to the experts.
It is noticeable that regions of the same class appear more than two times (e.g. regions of class
“10”) in the map. This can be interpreted either as a possible translocation, and thus its
identification is very important, or as a classification error of the method; the final decision is

made by the cytogeneticist.
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CHAPTER 4:
FULLY UNSUPERVISED M-FISH CHROMOSOME
IMAGE CLASSIFICATION

4.1 Introduction

4.2 Unsupervised M-FISH Image Classification — Literature Review
4.3 Chromosome Mask & Region Segmentation

4.4 Chromosome Distribution Estimation

4.5 Region Classification & Merging
4.6 Small Region Merging
4.7 Results

4.8 Conclusions

4.1 Introduction

Unsupervised classification could be considered very important for the characterization of the
M-FISH images. This is because of the relative high number of clusters (24 chromosome
classes: 1-22, X,Y) and of the initialization of these cluster centres which is not a trivial task.
Furthermore, there are significant chromosomes variations among M-FISH images. This
could be explained due to the nature of the chromosome imaging since it is a biological
experiment depending on a large number of parameters such as temperature and humidity of
the place of the experiment. The goal was to try to model the biological problem by using a
Gaussian Mixture Model. We accomplished that by representing the distribution of the
greyscale values of the chromosome pixels by two Gaussians; one for the hybridized pixels

and one for the non-hybridized pixels. Furthermore, we initialize the cluster centers by using
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the emission information of each chromosome for each channel. This information is always
available prior to the M-FISH experiment.

One of the key factors limiting the pixel classification accuracy is the variations
between M-FISH images. This is due to the fact that the M-FISH imaging technique is not
always accomplished under the same conditions e.g. humidity, temperature, type of
microscope, color spread [2] and these factors affects the quality of the produced M-FISH
image.

As one can see, the strength of absorption is not binary and varies widely across the
chart. Both class 20 and class 3 are predicted to absorb Spectrum Orange, but Spectrum
Orange is almost twice as strong in class 20. Also in this particular image set, the CyS5.5
fluorophore is weak; and its strength in classes that should absorb it is occasionally less than
that of other dyes in classes that should not. Furthermore, the difference in magnitude of
classes that should absorb Cy5.5 and classes that should not is not always great. The average
magnitudes of CyS5.5 in classes 4 and 5 are nearly identical, although class 5 should bind
Cy5.5, while class 4 should not. In addition, it is important to note that the characteristics in
this table are valid only for this set of data, since fluorophore strength often varies by batch

and by age of the fluorophore.

Furthermore, according to the color map of Kit-A, chromosome 3, should be ideally
observed only in the Channel 1, 2, 4, and 5 and should not be visible in other channels. Figure
4.1 presents the color spread for two chromosomes of class 3 on two different M-FISH
images (M-FISH;, M-FISH;). As one can observe the chromosome of Figure 4.1(a) presents a
distribution of the fluor signal along the chromosome as the distribution described in the
pattern of chromosome 3 (Figure 4.1(c)). However, Figure 4.1(b) presents the chromosome
class 3 for a different M-FISH image where it is obvious that this chromosome class has
failed to hybridize on channel 4 [2]. Specifically, the average fluor for chromosome 3 of the
channel 4 has a similar distribution such as the one the channel 3 (Figure 4.1(b)). We can
conclude that when the variation of the feature distribution across images is significant, which
means the feature distribution of an unknown image is unpredictable, classification methods

that rely on the estimation of class parameters (Supervised methods) will yield low accuracy

[2].
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Figure 4.1: Two chromosomes of class 3 of two different M-FISH images (M-FISH;, M-
FISH;). (a) Chromosome class 3 and its graph of average fluor signal along the chromosome
of M-FISH;. (b) Chromosome class 4 and its graph of average fluor signal along the
chromosome of M-FISH,. (c)Theoretic emission for each of the channels of chromosome
class 3.

The method consists of four different stages. In the first stage (Chromosome Mask) the
segmentation of the DAPI channel takes place using Otsu’s threshold selection method. Using
the binary image produced in the previous stage we extract all the pixels that belong to
chromosomes. The Region Segmentation stage decomposes the M-FISH image into regions
using the Watershed transform: the gradient magnitude of the multispectral image is
computed. The goal of the next stage (Region Characterization) is the classification of each
region of the M-FISH image. In order to achieve this we first estimate the parameters of
Single Channel Gaussian Mixture Models. Each Single Channel GMM is used to describe the
probability density of chromosome pixels from each channel of the M-FISH image. From this
GMM we estimate the parameters (mean, covariance, mixture coefficient) of each

chromosome class for a Multichannel Gaussian Mixture Model. Finally, we make use of the
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MAP-EM algorithm in order to adapt the parameters of the Multichannel GMM for each M-
FISH image. Having computed the class parameters, all chromosome regions are classified
into 1-24 chromosome classes. The final stage (Region Merging) is used to merge the

classified regions producing a final classification map for the cytogeneticist.
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Figure 4.2: Flowchart of the proposed method

The main contribution is the proposal of a new fully unsupervised classification method
for the M-FISH images. The unsupervised scheme is based on a multichannel Gaussian
Mixture Model (GMM) with 24 components, one for each chromosome class. In order to
overcome the problem of the initialization of the parameters of each GMM component, the
first choice would be to randomly select parameter values or perform an initial clustering of
the dataset. However, this would not incorporate the emission information of each

chromosome class that we a priori had. In our case the initialization is based on estimating
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the parameters of a single Gaussian Mixture Model via the Expectation Maximization (EM)
algorithm. Combining the parameters of the single channel GMMs and the emission
information of each chromosome class an effective initial estimation of the multichannel
GMM can be derived.

Although this initial GMM could accurately describe the chromosome distribution for
an M-FISH image with high Signal to Noise Ratio (SNR), this does not hold for images of
low SNR. Thus, a further adaptation of the parameters of the multichannel GMM is needed.
One straightforward approach is to use the classical EM algorithm starting from the initial
estimation computed in the previous step. However, the large number of chromosome classes
and the emission overlap could affect the mapping between each mixture component and each
chromosome class. To overcome this problem, some kind of constraints should be applied on
the GMM parameters. These constraints are naturally imported in the MAP-EM algorithm,
which was used in the method. The estimation of the parameters using the MAP-EM method
proves to be more effective in terms of classification accuracy over the classical EM
algorithm. Furthermore, apart from effectively using the GMMs, the proposed method uses
the Watershed transform in order to segment the M-FISH image into regions. It has been
already shown [21] that by classifying regions instead of pixels a significant increase in the
classification accuracy is obtained. Finally, the proposed method presents high classification
accuracy, without any user interaction, even when compared to reported results using

supervised classification methods.

4.2 Unsupervised M-FISH Image Classification — Literature Review
Although the M-FISH imaging ease the process of karyotyping [55], [3] visual inspection of
these images is a laborious and time-consuming process. Also the characterization of
chromosome anomalies is difficult since small rearrangements of chromosome material are
difficult to identify for untrained personnel. For this reason many attempts have been to
automate the whole or all part of the classification of M-FISH images process [26], [27], [28],
[56], [29], [30], [31], [32], [21], [57], [58], [21], [2], [59].

The methods described in the literature either first segment the image and then they
classify the pixels of the image or they directly classify all the pixels of the M-FISH image
including a class for the background. In addition, these methods can be divided into two

categories based on the use of images for training set:
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e Supervised [28], [29], [30], [31], [32], [21]: in a typical supervised classification
scheme, the goal is to train a classifier that can be used to predict previously
unseen images. These methods use a small number of images from the dataset to
train the classifier (e.g. Bayes [28]) and then they test its performance to rest
dataset.

e Unsupervised [57], [58], [2]: these methods do not use a set of M-FISH images
to train the classifier. They directly classify the M-FISH image using prior
knowledge such as the emission information of each chromosome class (see
Appendix A). Although, there have been proposed methods for unsupervised
classification of M-FISH image they have been tested only to a small number of

M-FISH images and they present low classification accuracy.

4.3 Chromosome Mask & Region Segmentation
The first step of the method is the segmentation of the DAPI channel of the M-FISH image.
Otsu’s method [23] computes automatically an optimal threshold value |I” by maximizing the

between class variance. An example of the segmentation of the DAPI channel of an M-FISH

image is shown in Figure 4.3.

(b)
Figure 4.3: The segmentation mask of a DAPI image. (a) The DAPI image and (b) the

segmentation mask By, .
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As a result of this task the image pixels are classified as foreground pixels (called

chromosome pixels) or background pixels. Suppose that the segmented image B, contains
N chromosome pixels and let X be the set of these chromosome pixels X ={X,X,,..., X } .
Each chromosome pixel is associated with a five dimensional vector X, k=1,...,N
containing the corresponding intensities of each of the five M-FISH image channels
X, = (xi,xkz,xi,x;‘, X; )T . The intensities of the chromosome pixels are normalized using the

standard method:

o , (4.1)

where ,uj , o) the mean and standard deviation of the chromosome pixels of the channel j .
Thus the set Y ={y,V,,...,Yy} is obtained (where y, €%’ ,k=1...,N containing the

corresponding normalized intensities of each of the five M-FISH image channels).

The Watershed Transform (WT) is a widely image segmentation algorithm that
originated from the field of mathematical morphology. The image is considered as a
topographical relief, where the height of each pixel is related to its grey level. Imaginary rain
falls on the terrain. The watersheds are the lines separating the catchment basins [16]. In order
to be able to apply the WT in a multichannel image one has first to define the gradient.
Instead of separately computing the scalar gradient from each channel of the image we

computed the tensor gradient [35], [36].

The output of the watershed transform for an image | is a tessellation T, of the image

into its different regions R, 1<1 < NR; each one characterized by a unique label |:

T, :{(Rl,ll),(RZ,Iz),...,(RNRI,INRI )} (4.2)

where NR, is the number of regions.
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(b)
Figure 4.4: Watershed segmentation of an M-FISH image: (a) The M-FISH image, (b)

watershed regions superimposed on the M-FISH image.

4.4 Chromosome Distribution Estimation
Each chromosome pixel Yy € R’ is associated with a five dimensional vector, containing the

normalized intensities of each of the five M-FISH image channels. We wish to partition the
chromosome pixels into K =24 groups equal to the number of chromosome classes. This can
be done using any clustering algorithm. The approach is based on Gaussian Mixture Model in
which one assumes that the pixels were sampled from multiple Gaussian components such
that each component corresponds to one chromosome class. The assignment of pixels to
classes can then be easily performed by computing the posterior probability of a pixel to a

class. Having described all that, the distribution of the chromosome pixels y could be

modeled using a multidimensional Gaussian Mixture Model (called multichannel GMM) with

K components, one for each chromosome class:

p(X):Z”i N(X;24,%,), (4.3)
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where 7 is the mixing probability or the prior probability of the i-th chromosome class,

N(Y; 4,%;) is a Gaussian distribution with z € R> the mean and X, the 5x5 covariance of
the i-th chromosome class, i=1,...,K . A standard approach to learn the parameters of each
chromosome class (7, 1£,%,,i=1,...,K ) is the EM algorithm. However, a common problem
of the aforementioned approach (EM algorithm) is the initialization of the parameters of each
chromosome class. This is due to the fact that the EM algorithm converges to a local

maximum of the likelihood that highly depends on the initial parameter values. Next, we

describe a novel process for the initialization of the Multichannel GMM.

4.4.1 Initial Chromosome Distribution Estimation

At first we compute initial values (7,/,%,i=1,...,K) for the parameters of each

chromosome class. The initialization step is composed of two procedures:

A.  Single channel GMM estimation: For each channel a two Gaussian Mixture Model
(GMM) is estimated: the first component corresponds to pixels belonging to
hybridized chromosomes (brighter in the image) and the second component
corresponds to pixels belonging to non-hybridized chromosomes (darker in the
image).

B.  Multichannel GMM initialization: Using the above single channel GMMs, we
compute an initialization of the 24-component Multichannel GMM that models

the distributions over the 5-D M-FISH image space.

4.4.1.1 Single Channel GMM estimation
Each channel j of the M-FISH image (except the DAPI channel) contains chromosome

pixels that either belong to hybridized chromosome or to non-hybridized chromosomes. Thus

the distribution of the grey scale values Yy, is modeled using a mixture of two Gaussians [2]:
P(Y) = (Y [CHPC)+ P [CHIP(Cy). (4.4)

where Yy, is the intensity of a chromosome pixel k in channel j, p(y)|CJ) is the

probability of pixel k to be hybridized in channel j, p(y,|C}) is the probability of pixel

k to be non-hybridized in channel j and C!, C) are the hybridized and non-hybridized
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classes, respectively. Also, P(Y!|C)~N(u,(c)?) and p(y} L)~ N(uh,(03)), 4,

o) are the mean intensity and standard deviation of the hybridized pixels of channel j,
respectively, whereas 4), o) are the mean intensity and standard deviation of the non-

hybridized pixels of channel j, respectively. Finally, P(C)) and P(CJ}) are the prior
probabilities for the hybridized and non-hybridized classes, for channel j, respectively, that
sum to 1.

For the estimation of the parameters {{,uh o), 1k, ok ,P(CH,P(C h)} ,...5} of the
GMMs we employed the well EM algorithm [60]. The EM algorithm is an iterative algorithm
which at each iteration consists of two steps, the expectation (E-step) and the maximization
step (M-step):

E-step: Given the estimation of parameters at iteration t, denoted as

{{,uhjm ,Ghj(!) aﬂn:) ,O, n:) , P(C’ ) P(C., i ))} , = 1,...5} , we define the sufficient statistics as:

PUCH- P (i IC)
o k 45
Clly)= POCH- p(y) |ICH+PY(CL)-p(y)|Cl)’ )

PYC) p (v ICH)

PY(C = 4.6
(0= B e o [+ PO BTG o
M-step: Update the parameters using:
N . .
A= PYC YD, (4.7)
k=1
N
=2 PYCLTYD, (4.8)
k=1
Pt (Ch) = (4.9)
pPt(Cly==—m, (4.10)
o XPOCY) W
o =+ , (4.11)

Ay,
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The EM algorithm is a local optimization algorithm, thus, it is sensitive to initial values

of the parameters. In order to overcome this problem, we are going to exploit prior
information about the problem. More specifically for the priors P(C}) and P(C)) we exploit
the emission information about the chromosome classes (Appendix A). It is well known that

the chromosome class index reflects the size of each chromosome in descending order (i.e.,

chromosome 1 is the largest and chromosome 22 is the smallest [22]). Thus, it is easy to
estimate the proportion A of pixels belonging to chromosome class i either from a small set
of M-FISH images [22] or to define it using medical knowledge [8]. Consequently, we can
define the initial prior P*=”(C/) as the proportion of the pixels that belong to the hybridized

pixels for channel j as:

K

Z(I)HAT

PO (Cly == , (4.15)

>

where the matrix @ is defined as (Appendix A):

(4.16)

{1, if chromosome classi emmits onchannel j}
ij )

B 0, otherwise
and P“~(Cl)=1-P“"(C)).
Since the data have been normalized (Eq. (2)) the initial values for mean and standard

deviation for the components of non-hybridized pixels are set to -1 and 1 respectively, and the

mean and standard deviation for the components of the hybridized pixels are set to 1:
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The initial values for mean and standard deviation of non-hybridized pixels are -1 and 1
respectively and the mean and standard deviation of the hybridized pixels are 1 and 1

respectively:
i =lLol =1, (4.17)

My =—Llog =1 (4.18)

4.4.1.2 Multichannel GMM estimation

The goal of this step is to compute an initial estimation of the chromosome class parameters (

7,1, 2,1 =1,...,K) of the multichannel GMM using the emission information that we are

going to exploit for each chromosome class.

First, we have to take into consideration some key points about the emission

information of each chromosome class. If a chromosome of class C, emits in channel j then
the probability of a pixel k belonging to that chromosome would be equal to the probability
p(ykj | Chj) of that pixel to be hybridized in this channel. Vice versa, if a chromosome of class
C, does not emit in channel j then the probability of a pixel which has been computed from
the single channel GMM belonging to that chromosome would be equal to the probability of
that pixel to be non-hybridized p(ykj |anh) in channel | . Based on the above, we can define
the probability P(y,|C,) of a chromosome pixel Yy, in channel j belonging to chromosome
class C, using the emission matrix @ as:

B(Y! 1C) =Dy p(y! |CH)+ (=) Py [Ch). (4.19)
where C,, 1<i<K are the 24 chromosome classes and 1< j<5.

For example the probability that a chromosome pixel of channel j=4 belonging to

chromosome C, is:

POV 1C) =Py, Yy |C)+ (=D, ) Py | Cih)- (4.20)
Using the emission matrix @ (from appendix A, we can see that chromosome 1 emits in

channel 4 thus @,, =1) and substituting in Eq. (24) we get:

If)(Y? |C1): IO(Y? |C1)- (4.21)
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Using this assumption we are going to derive initial estimation for the prior, mean and

covariance parameters of each class distribution (7, %,%,,i=1,...,K). The initial mean

i = ( T A ATA ) of each chromosome distribution, 1<i<K is computed by
estimating each f),1< j <5 using Eq. (23):

A =0 + (-0 )k, j=1,...,5.. (4.22)

Furthermore the initial covariance ii of each chromosome’s distribution, 1<i <K, is

computed using Eq. (4.23) as:
£, ~diag (1) (7) (o) (o) (7)) (4.24)

where (o)’ =(@, ) (0! ) +(1-@, )’ () j=1...5.
Finally, the prior probability is the expected proportion of pixels belonging to a specific

chromosome [22]:

7 =A,i=1..,K. (4.25)

4.4.2 Chromosome Distribution Adaptation

Having estimated the initial parameters for the multichannel GMM, the goal is to allow the
parameters to be further adapted. Instead of estimating the GMM parameters via the EM
algorithm, we employ Maximum A Posteriori (MAP) for parameter estimation, since we
already have incorporated prior knowledge (such as the emission information) to the initial
model. More specifically we have used the MAP-EM algorithm [61] which exploits prior
information. Like the EM algorithm, the MAP estimation is a two-step estimation process.
The first step is identical to the “Expectation” step of the EM algorithm. Unlike the M-step of
the EM algorithm, in the M-step of MAP-EM, parameters are obtained by taking into account

the initial model.

The parameters {7, 4", 2",..., 7, u¢’ 2} are initialized using the values from the

previous step e.g.:

o =7
w0 = 1<i<K. (4.26)
S0 _§



The MAP-EM estimation of the GMM parameters is described below:
E-step: In the E-step similarly to the previous case, we calculate the sufficient statistics, which

given the estimation of parameters at iteration t{ﬂ]“),,ul(t) DRI SRS }, they are

calculated as:

N
2. Py IC)
Vi(t)(yk): Kk:IN ’ (4.27)
D> Py, IC))
j=1 k=1
N
D YeP(Y, IC)
EV(y,) =+ , (4.28)
D Py, IC)
k=1
N
z YoV PCY, 1 C))
SCANESS N ’ (4.29)
> p(Y1C)
k=1
M-step: The M-step is described by the following update equations:
7 = (- () + i, (430)
ﬂi(m) = (1_ﬂ)Ei(t)(yk)+ﬁﬁi> ) (4.31)
Z = (=B D + [ B+ AAT ] [ ] (432)

where the parameters a, f and y are the learning rates which define how confident we are
about the prior values 7, i, 2, i=1,...,K..

Note that in the M-step the updates of the parameters Eqgs. (4.33)-(4.34) are made using
a combination of the updates suggested by the typical EM (first term of the sum) and the
initial model we have computed in the initialization phase (4.4 Chromosome Distribution

Estimation).

4.5 Region Classification & Merging

Having estimated the parameters (7, 4,2,,1<1<K)) of each chromosome class we could
classify a pixel YR’ to a chromosome class C., 1<i<K using the posterior probability

P(C, | ¥) using the Region Bayes classifier described in previous chapter.
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The next step of the method is region merging. Note that there are still regions that
could be merged resulting into a meaningful classification map. First, adjacent regions that
share the same regions class label are merged into one single region. In order to connect the
adjacent regions, the Region Adjacency Graph (RAG) is computed for the image [17]. The
RAG is a graph where two nodes (representing two regions) are connected if those two
regions are adjacent in the image. Thus, each region of the image is connected to all regions

that share the same class. An example is shown in Figure 4.5(a)-(b).
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(a) (b)
Figure 4.5: Region merging of chromosomes. (a) Initial classification map (we have used a
separate color for each chromosome class), (b) Region merging of adjacent regions of the
same class.

4.6 Small Region Merging

It has been observed that small regions are often misclassified by the region classification
step. In order to tackle this problem we have adopted the following procedure. First, all small
regions are identified. We define a small region as the region whose number of pixels is lower

than a threshold. This threshold must be lower than the number of pixels of the smallest

chromosome of the database and must be adapted for each M-FISH image M,,i=1,...,F of

the database (where F is the total number of images of the M-FISH database). We define P

the number of chromosome pixels of the i-th M-FISH image. Let’s assume that the M-FISH

image with the smallest chromosome is M, and SCP the number of pixels of this

chromosome. Thus, the proportion of pixels for the smallest chromosome for this image will

be:

T, =—. (4.35)



where P, is the number of chromosome pixels of the image containing the smallest
chromosome and Tis the proportion of the pixels for the smallest chromosome of this image.

Finally, we compute the pixel threshold T, for each M-FISH image M,,i=1,...,F of

the database as:
T =T,-P. (4.36)
Assume now a small region R of an M-FISH image where the # pixels of regionR <T..

We can use the RAG to select the neighbors of R: N, ={R,R Ry} . Let C the class of

IR EERE]
region R e N.,i=1,...,G and Q = {CI,CZ,...,CG} the set of these classes. Then we compute

the posterior probabilities P, (C;|R) for each C, € Q and select the class C; with maximum

posterior:
P (C; IR)2 P, (G [R),VC Q. (4.37)

An example of the application of this step is shown in Figure 4.6(a)-(b).
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(a) (b)
Figure 4.6: Small Region merging of chromosomes. (a) Initial classification map (we have
used a separate color for each chromosome class) and (b) the final classification map.

4.7 Results

In order to test the method we have used the Advanced Digital Imaging Research (ADIR) M-
FISH database. There are many images that give low classification accuracy [2], the common
factor among those images is that the image quality is poor. These images were self-trained
and tested using a Bayes pixel-by-pixel classifier. Those images that gave lower classification
accuracy than 85% were identified (also visually confirmed) as Bad Images (a list of the

images is provided by Choi et al. [2]).
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4.7.1 Parameter Estimation

In order to estimate the learning rates «, £, and y we conducted the following experiment

We varied the values of the learning rates as followed a:[0,0.0S,O.l,...,l],

B=[0,0.05,0.1,...,1], y =[0,0.05,0.1,...,1] and computed the classification accuracy for these

values. Figure 4.7, presents the accuracy of the method using these values for the ADIR M-
FISH image database.
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Figure 4.7: Classification accuracy using for different values of the learning rates «, £, and
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4.7.2 Classification Accuracy

The best overall classification accuracy for all the M-FISH images was found to be 89.95%
for learning rates equal to ¢ =0.9, f=y=0.2. The learning rates are computed for the
ADIR M-FISH image dataset. However, this database contains 3 different M-FISH datasets
produced by 3 different kits. Thus, the estimation is not required for a new kit. However, note
that when the learning rates are set to a=/f=y=0.0, thus the MAP-EM algorithm
degenerates to the classical EM estimation, the classification accuracy reduces to 83.62%.

This proves the effectiveness of the MAP-EM algorithm over the classical EM algorithm.
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Figure 4.8 presents the class classification accuracy for the best parameters values mentioned

above.
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Figure 4.8: (a) Class classification accuracy for each of the chromosome classes
(1,2,..,22,X,Y).

Finally, Figure 4.9 presents an example of the application of the method to an M-FISH

image.
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Figure 4.9: An example of the application of the method. (a) The annotated image, (b)
Classification map of the method.
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4.8 Conclusions

The method first uses a watershed based algorithm to segment the M-FISH image into
regions. Next, the goal is to partition the chromosome pixels by a Gaussian Mixture Model
with K =24 components, one for each chromosome class. However two main problems had
to be overcome:

A. The initialization of the multichannel Gaussian Mixture Model: We first estimate
five, two component Single Channel GMMs where the first component
corresponds to the hybridized class and the second to the non-hybridized class. We
then combine those GMMs in order to estimate an initial multichannel Gaussian
Mixture Model. Furthermore, we incorporate to this model the emission
information that we had from the M-FISH experiment (presented in Appendix A).

B. The adaptation of the parameters of the multichannel GMM: Although we could
adapt this multichannel Gaussian model using the EM algorithm we chose to
employ the MAP-EM method which uses the initial model build in the previous
step. This proves to be more efficient in terms of classification accuracy from the
classical application of the EM algorithm. More specifically the MAP-EM method
(89.95%) attains an increase 6.33%, over the application of the classical EM
(83.62%).

Having estimated the multichannel Gaussian mixture model we then classify each
region of the MFISH image. Finally a region merging step is utilized in order to produce a
final classification map to the cytogeneticist.

Several methods have been proposed in the literature for the M-FISH chromosome
image classification. Most of these methods are supervised requiring a small number of
images to train the classifier. Supervised classification methods, such as the Bayes classifier
and k-nearest neighbor require training data [14]. However, collecting and labeling a large set
of samples can be extremely costly. Additionally significant variations have been observed
between the M-FISH images. These variations are often due to a lot of factors such as long
exposure times, humidity, temperature, type of microscope, color spread [2]. When a
supervised classification method is used, the classification accuracy will be high when the
sample distributions of both training and testing data are the same. However, this is often not
the case making the need for a fully unsupervised M-FISH image classification method a

necessity. The method requires only the knowledge of the emission matrixes (Appendix A)
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which is available upon the purchase of the kit thus, making the M-FISH technique attractive

for use when ground truth does not exist.

Table 4.1: Comparison of the proposed method and other methods reported in the literature in
terms of chromosome classification accuracy

Average
Chromosome
. . Database Pixel
Method Year Type of Classification Used’ Classification
Accuracy
(%)
Pixel-by- .
Sampat et al. [28] | 2002 ‘ Supervised A 914
Pixel
Pixel-by-
Choi et al. [29] 2004 ‘ Supervised A 97.1
Pixel
Pixel-by- .
Sampat et al. [30] | 2005 . Supervised A 90.5
Pixel
Pixel-by-
Wang et al. [31] 2005 ) Supervised A 87.5
Pixel
Schwartzkopf et Pixel-by- .
2005 Supervised C 68.0
al. [32] Pixel
Karvelis et al. Region
2006 Supervised A 89.0
[21] Based
Karvelis et al. Region .
2008 Supervised C 82.5
[22] Based
Choi et al. [2] 2008 Unsupervised B 77.8
Region '
Unsupervised B 89.95
Based
This method 2012
Region ‘
Unsupervised C 83.62
Based
Pixel-by-
K-means 2012 Unsupervised B 72.48
Pixel

"A: Part of the database
B: The whole ADIR database minus the Bad Images

C: The whole ADIR database
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Table 4.1, presents a comparison of several different classification algorithms presented
in the literature. Most of the methods employ pixel-by-pixel classification schemes and use
the whole or part of the ADIR M-FISH dataset. Supervised based methods were the first
methods [28] that have been introduced for the classification of M-FISH images. The
classification accuracy for the whole ADIR M-FISH database is 82.5%. Unsupervised based
methods already have been tested for the whole database and their reported accuracy is 77.8%
[2]. We have also tested the K-means algorithm for the ADIR M-FISH database, where we
have used the emission information for each chromosome class in order to initialize the
cluster centers [24]. The classification accuracy was 72.48%. The method is superior to both
unsupervised and supervised methods as shown in Table 4.1.

Translocation is the most significant rearrangement. It involves two non-homologous
chromosomes which result from a break in each of the chromosomes, and subsequent reunion
[62]. A change in the color of a chromosome tip may be due to noise, staining, or an actual
translocation. Figure 4.10, presents two translocations between chromosome classes 9 and 4.
As it can be observed for this example, the method segments and classifies correctly the
translocated areas. If a fragment of a chromosome belonging to a translocation is smaller than
the smallest chromosome this will be probably merged to the neighbor chromosome. This is a
drawback of the method. However, there is a tradeoff between reducing misclassifications and
detecting translocations.

Fluorescent in Situ Hybridization (FISH) technology has been widely recognized as a
promising molecular and biomedical optical imaging tool to screen and diagnose different
types of chromosome anomalies that could be evolved in different types of cancer (e.g.
trisomy of chromosomes 3, 7, X has a significant impact on cervical cancer development and
prognosis [63]). One of the advantages of the method could be the application using different
types of multichannel FISH images in order to correctly segment and classify not only
chromosomes but also chromosome spots in general [63]. Furthermore, the method is
independent of the number of channels used by the FISH technology (e.g. a 2 image channel

image is used by Wang et al. [63] to detect cervical cancer).
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(b)
Figure 4.10: Two examples of accurately detection and classification of exchange of genetic
material (translocation) between two different chromosomes (green chromosome 4 and blue
chromosome 9). (a) The two translocated chromosomes and (b) The two translocated
chromosomes segmented and classified correctly by the method.
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CHAPTER §:
IDENTIFYING TOUCHING AND OVERLAPPING
CHROMOSOMES USING THE WATERSHED
TRANSFORM AND GRADIENT PATHS

5.1 Introduction

5.2 Automated Disentangling of Chromosomes — Literature Review
53 Recursive Watershed Segmentation

54 Gradient Path Computation

5.5 Region Merging

5.6 Results

5.7 Conclusions

5.1 Introduction

Automation of chromosome analysis has long been considered as a difficult task. However,
chromosomes in an M-FISH image do very often partially occlude each other; hence, their
segmentation is not trivial and requires the application of a dedicated procedure. In this
chapter a method is presented for the segmentation of touching and overlapping groups of
chromosomes in M-FISH images.

Currently there is no method for disentangling touching and overlapping group of
chromosomes for the M-FISH images. This created the necessity to develop such kind of
method. However, the goal was to combine geometrical features and already developed
methods for greyscale chromosome images. This was feasible by recursively applying the

watershed transform to each watershed area and incorporating the idea of gradient paths for
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disentangling overlapping groups of chromosome.

5.2 Automated Disentangling of Chromosomes — Literature Review

Many attempts have been made to automate parts of the chromosome M-FISH image analysis
procedure. However, chromosome images are inherent with the partial occlusion and touching
of chromosomes, as shown in Figure 5.1. This is one of the major factors hindering automatic
analysis. Spectrum based methods use a pixel-by-pixel classifier to classify each pixel of the
M-FISH image and this information may be sufficient to segment touching and overlapping
chromosomes [32]. However the measured fluorescence at a pixel may be the combination of
fluorescence in a neighbouring region leading many times to misclassification errors. These
factors make the pixel spectral information of touching or overlapping chromosomes
unreliable. Hence the spectral information alone cannot separate the touching and overlapping
chromosomes efficiently.

On the other hand there is a variety of geometric separation based methods proposed in
the literature for greyscale chromosome images [64], [65], [5], [66]. The main idea of these
methods is that they split the chromosome groups into segments and then they try to combine
these segments into chromosomes. Valley searching techniques [64], [65] attempt to find a
“pale path” of grey values corresponding to a separation between touching-overlapping
groups of chromosomes. Initially, all high concavity points (cut-points) are detected along the
boundary of chromosomes. Next, a heuristic search is performed to detect the minimum
density path between touching chromosomes. The chromosome group is split by the pale path
and the segments are combined to form separate chromosomes. Agam et al. [5] used concave
points to construct all the possible separation lines. In their work, they determined potential
chromosomes using rectangle hypothesis testing. However this hypothesis does not always
hold because of the existence of bended chromosomes that are touching or overlapping to
each other and thus a straight line cannot split exactly the chromosomes.

We can conclude that when only the spectral information is used, the segmentation
accuracy relies on the pixel-by-pixel classification accuracy. On the contrary, the geometry
based methods assume that chromosome shape alone is sufficient for the purpose of
separation. Thus both, geometry and spectral information, has to be merged in order to

achieve better segmentation results for M-FISH chromosome images.
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(b)

Figure 5.1: Touching and overlapping group of chromosomes. (a) Three chromosomes that

are touching each other, (b) Two chromosomes that overlap.

We describe a novel method that tackles the problem of touching-overlapping group of
chromosomes. Initially, the method uses the watershed transform to segment the DAPI image
into watershed regions. The watershed transform has been widely used for the separation of
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touching/overlapping groups of objects from images [39], [16], [67], [68]. In our case we
propose the recursive application of the watershed transform to each watershed region.
However there exist difficult cases of touching as also of overlapping groups of chromosomes
that need separation. For this reason we use a geometry method such as the “gradient paths”
to split each group of touching-overlapping chromosomes. However we do not compute the
gradient paths using the intensity of pixels of the DAPI image, but we propose the
computation of paths in the M-FISH image using pixels with high multichannel gradient
magnitude values. This computation proves to be more efficient than the computation of the
gradient path on the DAPI image since there are cases of touching or overlapping groups of
chromosomes where the gradient path on the DAPI image is difficult to compute since the
chromosomes are difficult to disentangle. Finally, after path computation, a region adjacency

graph is computed and a region merging algorithm is used to merge all regions.

5.3 Recursive Watershed Segmentation

The proposed method consists of three stages as it is shown in Figure 5.2: (a) the recursive
watershed transform computation, (b) the computation of each gradient path and (c) the
region merging process. The first stage consists of a number of steps. The first step is the
conversion of the initial DAPI chromosome image to binary. In the second step, the Euclidean
distance transform of the binary image is computed. The watershed transform is applied in the
next step and an initial estimation of the segmented chromosome areas is obtained. The
watershed transform is further applied separately to every segmented area until no more new
areas are created. The first step of the second stage is the computation of the high concavity
points along the boundary of each chromosome area. Next, all gradient paths are computed
and the binary chromosome area is split along the gradient path. All gradient paths are
computed using the multichannel gradient magnitude. In the final stage a recursive region
merging procedure is applied as follows. A region adjacency graph is computed and also each
region is classified independently using a region Bayes classifier. Then we merge all
neighbouring regions that share the same class. The identification of the overlapping

chromosomes takes place in the final step.
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In the first step, the DAPI chromosome image is converted to binary using a well
known automated threshold selection process [15]. Using the DAPI channel an initial

estimation of the regions of the M-FISH image is produced. The threshold operation at grey

level Ipartitions the pixel values of an image into two classes K, and K, (representing

{1,2,..,1}and K ={l+11+2,...,L}, where



L is the total number of grey levels in the image. An optimal threshold I” can be determined

by minimizing the following criterion function:

I" =argminog(l), (5.1)
|
where o3 (1) is the between-class variance for the threshold value |.

After the computation of the threshold |I” the binary image B can be computed:

_[o, if DAPI(x,y)<I"
B(X’y)_{h if DAPl(x,y)>|*}' -2

An example of the application of the threshold operation to a DAPI image is shown in Figure

5.3.

Figure 5.3: The thresholding procedure for a greyscale DAPI image. (a) The DAPI image, and
(b) the binary image.

In order to apply the Watershed Transform (WT) [16] to the image B it is common to
first compute the Distance Transform (DT) [67], [68]. Given an mMxn binary image B, its

distance transform is a map that assigns to each on-pixel ( p,) (with coordinates (X,Y,)) the
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distance to the nearest off-pixel ( p,) (with coordinates (X,,Y,)). The distance metric used is

the Euclidean distance D = \/( X, — X, )2 +(y, - Y, )2 .

The distance transform provides important information for the application of the
watershed algorithm [69]. The number of regional minima of the negative distance transform
constitutes indication of the number of areas that will be segmented by the WT. However a
common problem is that the distance transform contains a large number of such minima
leading the WT to over segment the initial image. On the other hand the greyscale
reconstruction [14] of the negative distance transform suppresses all minima whose depth are
lower than or equal to a threshold h e R . Thus we apply this procedure in order to alleviate
the over segmentation problem. An alternative for the elimination of the over-segmentation
effect could be the Gaussian blur of the gradient image [70], however the choice of the width
of the Gaussian kernel is a key parameter for these approaches.

The next step is the application of the WT. The watershed transform is a popular
segmentation method originated in the field of mathematical morphology. The image is
considered as a topographical relief, where the height of each point is related to its grey level.
Imaginary rain falls on the terrain and water begins to rise filling the different catchment
basins. The watersheds are the lines separating the catchment basins that form.

In our case we apply the watershed method using the negative distance transform. The
watershed algorithm produces a tessellation of the image into regions; these regions are called
watershed regions and depicted in Figure 5.4(a)-(b). Whereas several methods start with an
over-segmentation of the image and iteratively merge regions based on some measures of
similarity [71], the method introduces a new region splitting technique based on the watershed
transform. All the steps of the method —which do not require any a-priori knowledge—, are
recursively applied to every watershed area until no more new areas are produced. The result

of the recursive watershed transform is shown Figure 5.4(c)-(f).
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e)
Figure 5.4: An example of the application of the recursive watershed transform for a DAPI
chromosome image. (a) DAPI image, (b) 1 iteration, (c) 2 iteration, (d) 3 iteration (e) 4
iteration and (f) 5 iteration.

5.4 Gradient Path Computation
The idea of paths has been introduced in early 90°s [64], [65] in order to separate touching

groups of chromosomes for greyscale images such as the G-banded chromosome images [72].
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It is based on two assumptions: (a) where chromosomes touch the cluster boundary tends to
form an acute angle and (b) at points where chromosomes touch, the optical density is
relatively low. The detection of the paths is computed via a search algorithm. The search
begins at a cut-point and proceeds in the direction of the normal vector. A cut-point is a
boundary point at which the boundary is highly concave. It then proceeds until another
boundary point is found as follows: At the current point a list of candidates is found as it is
shown in Figure 5.5(a). A new trace point is found by choosing the candidate with the
smallest intensity value. Finally, the searching direction is updated every d points to allow
the path to follow the shape of its trace points, as it is shown in Figure 5.5 (b). The path that

starts from the cut-point and ends to a boundary point was called a pale path.

Perpendicular to Current
search direction _searc.h
direction

Candidates

(a)

Current search
direction

New search direction
after d=3 path points

(b)

Figure 5.5: Pale path computation: (a) Candidates for the next path point, and (b) update of
path’s direction after d =3 points.

The pale paths were used to cut only touching groups of chromosomes without
addressing the case of overlapping chromosomes. Moreover, these studies computed the pale
paths only for greyscale images. Using a low intensity path the separation of touching
chromosomes is feasible, but fails particularly in overlapping cases. Indeed as it is shown in
Figure 5.6(a) a pale path does not exist for the case of the overlapping group of chromosomes

since the intensity of the overlapping region is homogenous and relatively high.
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We propose a modification of the pale path approach in order to achieve separation of
touching and overlapping chromosome groups in coloured M-FISH images. This modification
uses the multichannel gradient of the M-FISH image [22], [36]. The basic idea is the
following: instead of leading the path to follow low intensities pixels, the path now follows
pixels of high multichannel gradient magnitude values. The computation of the multichannel
gradient magnitude is based on the five channel coloured M-FISH image. This gives the
advantage that the paths follow high gradient magnitude pixel values and these high values
occur when chromosomes touch or overlap. The path that begins from a cut-point and follows
pixels of high gradient magnitude values of the M-FISH image until it reaches a boundary
point is now called a gradient path.

To compute the cut-points we first extract the boundary from the binary image B.

Suppose that the pixels of the boundary of a segmented region define the set (c,,c,.,...,Cp)

where C;,C,, are successive points of the boundary and PB the number of pixels of the
region boundary. In order to compute the cut-points we compute the curvature of the
boundary [65], [64], [66] since local maxima of the curvature indicate candidate positions of
the cut-points. For each point of the boundary (c;:i=1,...,PB) we consider the triangle that
is defined from the three points C_,,C,,C,,, (k =3) and compute the angle a(i) defined by the

triangle:

a(i) = arccos ( e )J -sgn [det (6—Ci Cu—C ):I (53)

”Ci —GCiy ” | Gk =G ”

In Figure 5.6, we demonstrate the steps for the computation of the cut-points in a
group of touching and overlapping chromosomes. After the binarization of the chromosome
group (Figure 5.6(a)-(b)) the curvature of the boundary points (Figure 5.6(c)) is computed and
is illustrated in Figure 5.6(d). All the cut-points are automatically computed by choosing the
boundary points that exceed an angle threshold: a(i)>210°, i=1,...,PB. The red points in
Figure 5.6(d) and Figure 5.6(e) illustrate the cut-points that exceed this angle threshold. As
we observe in Figure 5.6(¢), several candidate cut-points are computed. To overcome this

problem, the neighbouring candidate cut-points are automatically grouped and from each
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group of candidate cut-points we extract the one that has the maximum angle as it is

illustrated in Figure 5.6(f).

(2)

Figure 5.6: The computation of the cut-points for a touching-overlapping group of
chromosomes. (a) The DAPI watershed area, (b) the binary image, (c) the boundary of the
group of chromosomes over imposed on the M-FISH image (the yellow point depicts the first
boundary point), (d) the curvature (in degrees) along the boundary points with red points are
depicted the cut-points that exceed the angle threshold, (e) the cut-points (red points) over
imposed on the M-FISH image, (f) the groups of the candidate cut-points and (g) the final
computed cut-points.
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The next step of the method is the computation of the multichannel gradient magnitude,
as the gradient path will follow pixels having high multichannel gradient values. The
multichannel gradient magnitude is computed as described in Section 2.4.1.

Next we proceed to compute the gradient path. The initial direction of the gradient path

is set as the bisector of the angle a(i)=Zc, ,,C,C,, at the starting points C_,,C,C,,, as it is

—k 2 ™2 ¥itk o
shown in Figure 5.7(a) and Figure 5.7(b), where C; is the initial cut-point. The computation of

the gradient path proceeds as follows: we choose from the pixel-candidates the one that has
the maximum gradient value. We then proceed to the next pixel updating the current search
direction every d =3 points until we reach a boundary point. Finally, we delete points, of the
binary image, along the gradient path. We present the computation of the gradient path for a
touching-overlapping chromosome group in Figure 5.7(c)-(d) and in Figure 5.7(e) the final

regions produced from the binary image by cutting along the gradient paths.

Perpehdicular ofthe /-/
Sc?ch Direction/

s I/'
et p

Search Direction

(c) (d)
Figure 5.7: The computation of the gradient paths. (a) The initial search direction and the
perpendicular of the search direction, (b) a gradient path reaching the other side of the
boundary (the green points depict the points of the gradient path), (c) all the gradient paths

85



computed for all the cut-points of the chromosome group, and (d) the binary image after the
binary image has been cut by the gradient paths.

5.5 Region Merging

The purpose of this stage is to connect regions that have been split by gradient paths. In our
case we call a region small if it contains less than 25 pixels. This step was implemented by
computing for each region of the binary image, the Region Adjacency Graph (RAG) [71],
where two nodes (representing two distinct regions) are connected if the corresponding

regions are adjacent. An example of a RAG is shown in Figure 5.8.

(c)
Figure 5.8: The Region Adjacency Graph after the gradient paths split the binary image. (a)
The M-FISH image for a touching group of chromosomes (the thin white line depicts the
boundary of the binary image), (b) the gradient paths overimposed on the M-FISH image, and
(c) the Region Adjacency Graph after the gradient paths split the chromosomes.
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Then the Region Bayes Classifier (RBC) [22], [47] was employed in order to classify
all the regions of the watershed area as follows. An example of small region merging is
shown in Figure 5.9(a)-(b).

The next step of the method is to classify all the regions (including the merged ones) of
the binary image using the Region Bayes Classifier described previously. Then all regions
that are adjacent and share the same class are connected. Finally, the RAG is computed and

the procedure is repeated until no more regions are connected.

#Region | Class #Region | Class #Region | Class
R @ R @ R @
R, @, R, Wy R, @,
R3 a)l 6 R3 (01 3 R3 a)l
R4 a)l 3 R4 a)l
R @
(a) (b) (c)

Figure 5.9: Region merging of the binary image. (a) Initial region adjacency graph and the
classes of each of the regions of the binary image: the small region R, is merged with region

R, since the posterior probability P(w, |R,) > P(®, |R,),i= {1,4}, (b) the region R and R,

are merged since they share the same class @, and (c) the final region merging result.

The final step of the method is the identification of the overlapping chromosomes. The
key idea in this step is that when two chromosomes overlap, a cross shaped object is formed.
In this case the method splits the binary image in way that one region of the image separates

two regions that share the same class. This is illustrated in Figure 5.10. Thus the final step of
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the method is to identify these overlapping cases by checking for each region of the binary

image whether it has two neighbouring regions of the same class.

GRADIENT PATHS RAG AFTER REGION MERGING

CASE A

CASE B

Figure 5.10: Two overlapping chromosome cases. The proposed method identifies them
correctly. CASE A: Regions R, and R, are identified as an overlap since the region R, is

connected with two regions of the class @, .CASE B: Regions R and R, are identified as an

overlap since the region R, is connected with two regions of the class .

88



5.6 Results

5.6.1 Dataset

To validate the method we used the ADIR M-FISH database. As a ground truth for the
touching chromosomes, we used the binary image produced by the DAPI image to identify
the cases of touching chromosomes in an M-FISH image. For each object produced by the
binarization procedure we determined the cases of touching. Finally as a ground truth for the
cases of overlapping we used the characterized karyotype image of the M-FISH database
since an overlapping region is represented in that image by pixels having the value of -1. The

number of touches and overlaps in the M-FISH database is shown in Table 5.1.

Table 5.1: Number of touching and overlapping chromosomes in the M-FISH database.

Touching Overlapping
Chromosomes Chromosomes
Total Number
1178 189

5.6.2 Touching Chromosomes

The separation accuracy for the touching group of chromosomes was measured by the
method. A correct separation occurs when two or more touching chromosomes are segmented
correctly. The results of the method for the touching groups of chromosomes are shown in
Table 5.2. We have also compared the method with the method of Pale Paths [64] for the
touching groups of chromosomes as the method of pale paths cannot handle overlapping
cases. In order to compute the pale path we have used the DAPI image since the pale path
uses a greyscale image.

It 1s interesting to mention the robust behaviour of the method in the case of isolated
bended chromosomes. It is common in the M-FISH chromosome database to find cases where
isolated chromosomes bend, as shown in Figure 5.11. For these cases, cut-points are found
and gradient paths begin to split the chromosome into two regions. However the region

merging stage merges these regions to form one chromosome again.
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Table 5.2: Comparison of our work with other works presented in the literature for the
touching group of chromosomes.

Schwartzkopf et Jiet al. The Proposed Method
al. [32] [64] [25]
SEPARATION o o o
ACCURACY Accuracy 77% 84.2% 90.6%
#Images 183 183 183
DATASET
DECRIPTI
¢ ON #Touches 720 1178 1178
Gradient Path RAG Final Binary Image
<
H a1
7
<
@)
~
=
n
<
®)
U o1
=
n
<
®,

Figure 5.11: Examples of three different cases of bended chromosomes. The proposed method
handles them successfully after the region merging stage.
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5.6.3 Overlapping Chromosomes

The separation accuracy for the overlapping group of chromosomes is also measured. The
results of the method for the overlapping groups of chromosomes are shown in Table 5.2.

Table 5.3: Comparison of our work with other works presented in the literature for the
overlapping group of chromosomes.

THE
SCHWARTZKOPF et
al. [32] PROPOSED
METHOD
SEPARATION o o
ACCURACY Accuracy 34% 80.4%

DATASET #Images 183 183
DECRIPTION #Overlaps 189 189

5.7 Conclusions

We have described a novel method for the separation of touching and overlapping
groups of M-FISH chromosome images. The method is based on the recursive application of
the watershed transform and the computation of gradient paths for each watershed area. A
region merging stage is finally applied to merge regions that have been wrongly split by the
gradient paths. The method is evaluated using an M-FISH chromosome image database and
an overall separation accuracy of 90.6% and 80.4% for the touching and overlapping groups
of chromosomes respectively has been found.

In fact, only one method has been presented in the literature for the separation of M-
FISH images testing its ability to separate touching and overlapping groups of chromosomes
for the whole M-FISH database [32]. The method uses the information from all the channels
(the 5 channel M-FISH image including the DAPI image) whereas Schwartzkopf et al. [32]
use only the information provided by the 5 channel M-FISH image.

To best of our knowledge the pale paths were able to separate only touching groups of
chromosomes without handling overlapping chromosomes [65] [64]. We expand the idea of
the paths in order to address also the case of overlapping groups. More specifically we
introduce the gradient paths which more effectively segment not only touching but also
overlapping groups of chromosomes for the M-FISH images. The gradient path is superior to
other proposed splitting techniques for two reasons:

1. Unlike other methods [5], we do not assume that a path is a straight line between
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two cut-points. Figure 5.12, depicts some examples of touching and overlapping
chromosome groups, none of which can be split by a straight line without
fragmenting a chromosome. Such cases usually happen where more than two

chromosomes are involved in a group of touching-overlapping or one of the

chromosomes is bent.

Figure 5.12: Six examples of touching and overlapping group of chromosomes where straight
lines between cut points cannot separate correct the chromosomes.

2. The paths have been appropriately modified in order to separate overlapping and
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touching groups of chromosomes in M-FISH images by computing the multichannel
gradient and the running of the path through high gradient magnitude values. Figure
5.13, illustrates some examples of the computation of the pale path using the DAPI
image versus the gradient path which uses the multichannel gradient magnitude of

the M-FISH image.

PALE PATH GRADIENT PATH

Figure 5.13: Pale path versus Gradient Path. Three examples where the pale path fails to
separate correctly the chromosomes while the gradient path correctly separates them.

Table 5.2 and Table 5.3 shows a comparison between the proposed study and the
method which proposed by Schwartzkopf et al. [32]. While the number of overlapping cases

is the same, the number of touches differs between the two methods. This is done due to the
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different approaches employed by the two methods for the determination of touching groups
of chromosomes. In our case we used the binary image produced by the DAPI image to
identify the number of touching chromosomes in an M-FISH image whereas Schwartzkopf et
al. [32] has manually chosen the number of touches. In general, it is difficult to compare the
two methods directly since they are not handling the same number of touching chromosomes.
However the method is employed in the same M-FISH database and the number of touches is

higher than that reported in Schwartzkopf et al. [32].
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CHAPTER 6:
CONCLUSIONS

6.1 Concluding Remarks

6.2 Directions for Future Research

6.1 Concluding Remarks

In this thesis we have proposed novel methods for multichannel chromosome image
segmentation and classification. First, we introduced a region segmentation method for
multichannel image segmentation. Then, a supervised region classification method employed
for chromosome classification. A fully unsupervised classification method was also proposed

More specifically, in order to perform image segmentation we proposed in Chapter 2, a
multichannel watershed-based segmentation method for multispectral chromosome images
[21], [22]. This way we were able to segment the M-FISH image into regions. These regions
contained pixels with same color characteristics. The method was tested on the ADIR M-
FISH database and compared to another pixel-by-pixel classification method. Superior results
were achieved.

In Chapter 3, we introduced a supervised region classification method for M-FISH images
[73], [22]. After the region segmentation stage the classification of the regions takes place.
The method is also tested and compared to a pixel-by-pixel methodology on the same dataset
and higher classification accuracy is achieved when using the method. Finally, we use the
concept of the Vector Median Filtering in order to enhance the classification accuracy of
chromosome M-FISH image classification. The Direction Distance Filter (DDF), Basic
Vector Directional Filter (BVDF) and Weighted Vector Median Filtering (WVMF) were also
tested and prove the enhancement in the classification accuracy when using the ADIR M-

FISH dataset.
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In Chapter 4, an unsupervised classification method for M-FISH images was presented
[74], [75]. The method incorporates prior information about the emission of each
chromosome class to each M-FISH image channel. The classification accuracy of the method
was higher when compared even to supervised methodologies.

In Chapter 5, a method for the disentangling of touching and overlapping chromosomes
[76] was presented. The method introduces for the first time the idea of gradient paths a split
path that is used to cut merged chromosomes. The Region Adjacency Graph and a region
classifier are used to merge the parts of chromosomes that have been cut previously by the
gradient paths. The method has been tested on a large number of touched and overlapping
chromosomes achieving a good separation ratio when compared to other available methods

such as pale paths.

6.2 Directions for Future Research

It will be important to move one step ahead by detecting the different types of
chromosome anomalies. Currently our algorithm is able to detect only arithmetic and
translocations anomalies which are the most significant type of anomaly in chromosomes.
However it may be possible by incorporating medical knowledge to the problem to detect
further anomalies such as deletions, duplications and inversion rings.

The combination of all the methods described in this thesis could result in the
development of an integrated fully automated system for the analysis of M-FISH chromosome
images, which would embody automated chromosome segmentation, separation of occluded
chromosomes and finally classification.

It would be very interesting to detect the centromere (the center of the two arms of the
chromosome) of each chromosome. This type of information is valuable for the cytogeneticist
since the centromere plays an important role for the identification of chromosome
abnormalities.

Fluorescent in Situ Hybridization (FISH) technology has been widely recognized as a
promising molecular and biomedical optical imaging tool to screen and diagnose different
types of chromosome anomalies that could be evolved in different types of cancer (e.g.
trisomy of chromosomes 3, 7, X has a significant impact on cervical cancer development and
prognosis [36]). One of the advantages of the method could be the application using different

types of multichannel FISH images [77]. Furthermore, the unsupervised classification method
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is independent of the number of channels used by the FISH technology (e.g. a 2 channel

image is used by Wang et al. [77] to detect cervical cancer).
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APPENDIX A

M-FISH emission charts for each chromosome class.
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